首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
羟基磷灰石[Ca_5(PO_4)_3(OH),HA]是一种重要的生物医学材料,尤其是球形羟基磷灰石更兼具比表面积大、流动性好和载药量高等特点,使其非常适于作为硬组织修复的基础材料,本文对现有球形羟基磷灰石(HA)的制备方法进行了综述,对各种制备方法所得微球的结构和尺寸大小作了比较,并对微球的成因进行了初步探讨。  相似文献   

2.
羟基磷灰石陶瓷微球的流动性好、容易填充,近年来在骨修复,尤其是口腔手术中得到较多应用。以HA-(NaPO3)6-Mg(H2PO4)2-明胶为陶瓷浆料,应用液滴-冷凝法对羟基磷灰石陶瓷微球的制备工艺进行了探索研究,获得了球形度好、粒径均一的陶瓷微球。  相似文献   

3.
采用WOW复乳法制备羟基磷灰石,内水相为(NH4)2HPO4水溶液,中间油相为易挥发的环己烷,外水相为Ca(NO3)2.4H2O水溶液。分析了反应中传质机理为Ca2+扩散到内水相,在碱性下与内水相的HPO42-反应生成羟基磷灰石。通过XRD、FT-IR、SEM、TEM分析了产物的成分和形貌,证实产物为300nm左右的羟基磷灰石空心球。讨论了反应温度对纳米球形貌的影响,当温度为10℃时发生界面反应,得到空心的纳米球。  相似文献   

4.
采用喷雾干燥法制备羟基磷灰石(hydroxyapatite,HA)微球。用扫描电镜、激光粒度分析仪及比表面积分析仪等表征HA的微观结构及性能。结果表明:HA微球具有理想的球形结构、比表面积为44.135m2/g,孔体积为0.2911cm3/g,且其粒度分布较窄。利用高压匀浆法填充HA色谱柱,并用高校液相色谱仪检测性能,结果表明色谱柱柱效较高。  相似文献   

5.
不同结构羟基磷灰石微球的制备及相关机理分析   总被引:2,自引:1,他引:1  
利用喷雾干燥法成功制备具有实心、多孔和空心结构的羟基磷灰石(hydroxyapatite,HA)微球,简要分析不同结构HA微球的形成机理.用扫描电镜观察产物的微观结构和表面形貌发现:将HA料浆直接喷雾十燥可以获得形状规则的实心微球;向料浆中加入明胶溶液后再喷雾干燥,随后经高温煅烧可以获得孔隙率较高的多孔微球:向料浆中加...  相似文献   

6.
以壳聚糖为模板,通过反向乳液聚合制备得到羟基磷灰石微球(CTS-HAP),在利用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、红外光谱(FT-IR)对改性和吸附前后微球进行微观分析基础上,测定其在氟化钠溶液中的平衡吸附量为17.8 mg/g(吸附pH=4),微球对氟离子吸附符合多层分子吸附模型——Freundlich模型。针对氟离子质量浓度为2 789.2 mg/L、pH为1.7的酸性高含氟废水,设计二阶段除氟。初步除氟阶段氢氧化钙用量为10 864 mg/L,剩余氟离子质量浓度为200.6 mg/L,去除率为92.81%;深度除氟采用CTS-HAP微球吸附法,CTS-HAP微球用量为24 g/L,去除率为95.2%,满足处理后废水氟离子浓度要求。  相似文献   

7.
以胰岛素为目标药物,以丝素(SF)和羟丙基壳聚糖(HPCS)为包药材料,复凝聚法制备SF-HPCS载药微球。采用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TGA)等对载药微球的结构、外部形貌及热性能等进行了表征。结果表明,所制备的载药微球表面密实,平均粒径22.4μm,呈正态分布;载药微球对胰岛素的包埋率达73.6%,大于HPCS载药微球(64.3%)及壳聚糖(CS)载药微球(57.1%);SF-HPCS载药微球在人工胃液中4h内累计释药率为21.3%,在人工肠液中24h内累计释药率达81.2%,48h累计释药率为92.2%,释放过程平稳、缓慢。  相似文献   

8.
利用简单的氨气扩散的方法分别合成出了花状多孔和空心微球羟基磷灰石,研究了磷酸根浓度和非离子表面活性剂PVA对最终产物羟基磷灰石形貌的影响,并用场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射等方法对所得产物进行了表征.研究结果显示,在不含有PVA的溶液中,最初形成的物质为无定形磷酸钙(ACP),其随后转变为花状羟基磷灰石;增加磷酸根的浓度而保持钙离子浓度不变,得到的最终产物为空心羟基磷灰石微球.在溶液中加入非离子表面活性剂PVA,无论是否改变磷酸根浓度,得到的产物均为花状羟基磷灰石.  相似文献   

9.
以两亲性聚己内酯-聚乙二醇-聚己内酯(PCL-PEG-PCL)共聚物为载体、姜黄素类化合物为模型药,采用溶剂挥发法制备了载姜黄素(或双去甲氧基姜黄素或四氢姜黄素)PCL-PEG-PCL微球,并利用FT-IR、GPC、SEM对其进行表征,研究了其释药性和抗氧化性。结果表明,PCL-PEG-PCL微球对姜黄素、双去姜黄素和四氢姜黄素具有缓释作用;原药、载药PCL-PEG-PCL微球对ABTS·+、DPPH·、·OH具有较好的清除作用,且清除作用随样品浓度增加而增强。  相似文献   

10.
洪雅真  朱利会 《化工进展》2018,37(3):1130-1136
以阿霉素(DOX)为小分子化学药物模型,采用吸附法对聚乳酸(poly-L-lactide,PLLA)多孔微球进行载药,采用场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRPD)及差示扫描量热(DSC)对DOX-PLLA复合微球的形貌粒径及空气动力学性能、药物及材料的理化性能、载药性能进行表征,并且研究了其载药量、包封率和体外释放性能。结果表明,不同载药量之间的PLLA多孔微球粒径并无显著差异,均具有良好的空气动力学性能,适合肺部可吸入给药的条件;化学组成未见明显改变,物理结构由结晶态变为无定形态;随载药量的增加(2.9%,4.0%,4.6%),包封率逐渐降低(56%,51%,44%);药物的体外释放与原料药相比具有一定的缓释效果,最长释放时间可达5天,表明DOX-PLLA复合微球有望作为缓释制剂用于肺部给药。  相似文献   

11.
泽用PHBV为载体,采用乳化溶剂蒸发法制备黄体酮的缓释微球进行了研究。结果表明,当选用明胶为乳化剂时,可以制得分散、较圆且表面光滑的微球;明胶浓度及搅拌转速不但影响微球的粒径而且影响药物包埋率;药物的包埋率还受PHBV在氯仿相中浓度、药物加入量以及制备温度的影响。研究微球体外释放行为发现,当PHBV在氯仿中浓度为0.1(w/v)、黄体酮加入量为PHBV质量的0.06(w/v)、温度为40℃时,制得  相似文献   

12.
氟离子在饮用水中浓度超过1.0mg/L,将对人体健康造成极大危害.通过原位共沉淀法将具有磁性的四氧化三铁掺入羟基磷灰石(HAP)中制备磁性HAP.磁性HAP可通过普通磁体将其吸附并分离回收.实验结果表明,最佳的制备条件为反应温度和时间为60℃和1h,陈化温度和陈化时间为25℃和12h,四氧化三铁用量为0.08g.比较了HAP和磁性HAP对水溶液中氟离子的去除效果.Langmuir模型更适合于该体系,拟合得到最大吸附容量为13.70mg/g,说明磁性HAP对氟离子的吸附属于单层吸附.ΔG0<0和ΔH0>0表明该吸附过程为自发的吸热过程.吸附过程符合拟二级动力学.磁性HAP循环再生使用4次以上,仍能保持85%以上的除氟效率.高吸附容量和优异的循环使用性能表明磁性HAP是一种有效的、可重复使用的除氟吸附剂.  相似文献   

13.
张爱娟  高增丽 《硅酸盐通报》2015,34(10):2829-2833
水浴条件下,中空球形碳酸钙(HSCCs)与磷酸氢二钠溶液反应成功合成了中空羟基磷灰石微球(HHMs).利用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)对合成的中空羟基磷灰石微球的组成、结构、形貌进行了表征.结果表明,羟基磷灰石(HA)由模板碳酸钙直接转化而成,羟基磷灰石微球由杂乱分布的层片状晶粒聚集而成中空结构,直径约为4 μm,并对转化反应机理进行了初步探讨.  相似文献   

14.
Hydroxyapatite (HAp) hollow microspheres with hierarchically porous structure and nanorice‐like architecture units were synthesized by the composite‐hydroxide approach. NH4H2PO4 was first reacted with hydroxides to form a hydroxide‐insoluble M3PO4 (the term M represents either Na or K). The diffusing M3PO4 at the liquid–solid interface then reacted with the Ca(OH)2, forming insoluble HAp hollow spheres by Kirkendall process. Results show that when reaction time is increased from 3 to 12 h, the average diameter of the microspheres increased from 2.64 to 4.16 μm. In addition, the size homogeneity of the hollow microspheres was improved gradually due to Ostwald ripening. The prepared hollow microspheres were treated by ultrasound, and nanorice‐like component units with a large mass of mesopores (<10 nm) were displayed. These prepared HAp hollow microspheres might be expected to apply to ion adsorption and drug delivery.  相似文献   

15.
将2,2,6,6-四甲基哌啶-1-氧化物自由基(TEMPO)氧化纳米纤维素(NFC)与广谱抗菌剂莫西沙星通过物理共混、真空抽滤制备出具有缓释和抗菌特性的莫西沙星/NFC缓释膜。研究了NFC的羧基含量、制备NFC时的均质次数对莫西沙星/NFC缓释膜的力学性能、溶胀性能以及药物释放性能的影响,同时探究了缓释膜的抑菌效果。结果表明:当NFC含羧基为1.13 mmol/g,NFC制备时的均质次数为8次时,莫西沙星/NFC缓释膜的弹性模量为3.48 GPa,其平衡溶胀率比NFC膜高,可达到6.03,药物负载率为21%,在体外8 h释药量为19.96%。不同羧基含量的莫西沙星/NFC缓释膜的药物释放曲线均符合Peppas方程;均质次数和pH值增加时,缓释膜的药物释放由渗透和溶胀释放为主转为浓度差驱动的扩散释放为主,相应地其释放曲线由符合Higuchi方程转为符合Peppas方程。莫西沙星/NFC缓释膜对标准金黄色葡萄球菌的抑菌圈直径在4.38~6.33 mm范围内,有着明显的抗菌作用,含羧基1.70 mmol/g,均质次数8次的莫西沙星/NFC缓释膜抑菌效果最好。  相似文献   

16.
以异丙基丙烯酰胺(NIPAAm)和羟甲基丙烯酰胺(NHMAm)为共聚单体与壳聚糖(CS)制备形成了温度敏感和pH敏感的互穿网络(IPN)水凝胶Poly(NIPAAm-co-NHMAm)/CS;用红外光谱表征了其结构特征,研究了不同条件下水凝胶的溶胀性能,并初步研究了水凝胶对药物双氯芬酸钠(DS)的缓释效果。结果表明,该水凝胶具有明显的温度和pH敏感性,温度越高,溶胀度越小,释药越慢;pH越小,溶胀度越大;CS含量为0.6%时溶胀度最大。在NHMAm单体质量配比为8.7%时,水凝胶的低临界溶液温度(LCST)达到38℃,且此时对DS持续释药时间可达到24 h。水凝胶的释药动力学曲线符合修正的一级动力学模型。该水凝胶体系可通过改变NHMAm单体配比来调节温敏特性,是一种潜在的温度和pH双重敏感的药物缓释载体。  相似文献   

17.
祁燕  汪涛  杨心  王阳阳 《硅酸盐通报》2016,35(2):496-499
以经不同浓度植酸(IP6)溶液表面改性的羟基磷灰石(HA)粉体为固相,蒸馏水为固化液制备了基于螯合作用固化的羟基磷灰石骨水泥,研究了IP6浓度对骨水泥固化产物、抗压强度及微观形貌的影响,并初步分析了IP6与HA的螯合机理.结果表明:IP6浓度不影响骨水泥的固化产物,但对骨水泥的抗压强度和微观形貌有显著影响.当IP6浓度达到5000 ppm以上时,骨水泥抗压强度可保持在30 MPa以上,并且其内部结构更加致密.  相似文献   

18.
邱雯青  王德平  陈文娟  叶松  赵欣 《硅酸盐学报》2012,40(12):1749-1754
为探索具有荧光性能的锶羟基磷灰石作为骨疾病治疗用药物载体材料的应用前景,以Ca(NO3)2.4H2O)、Sr(NO3)2、(NH4)2HPO4、柠檬酸三钠、十六烷基三甲基溴化铵为原料,在180℃水热处理24h,制得了不同掺锶量的羟基磷灰石。表征了锶羟基磷灰石微球的晶相、形貌、组成、比表面积和荧光性能;研究了以锶羟基磷灰石作为载体,溶菌酶为模型药物的缓释效果。结果表明:合成的产物为花束状羟基磷灰石微球,随着掺锶量的增大,锶羟基磷灰石单球形貌由短棒状变为片状再变为长棒状,而比表面积和荧光强度则先增大后减小。此外,锶羟基磷灰石作为药物载体的缓释速率和释放量,随着锶含量的增大,呈现先减小后增大的趋势。  相似文献   

19.
纳米羟基磷灰石在药物载体中的应用   总被引:8,自引:0,他引:8  
综述了纳米羟基磷灰石(HAP)作为药物或基因载体的研究现状及其生物相容性评价,指出了HAP纳米粒子作为药物或基因载体的主要发展趋势及存在的问题。药物或基因载体的研究较多,但是尚未找到一种理想的载体材料。作为一种新的药物基因载体,HAP纳米粒子有高的药物吸附量及良好的生物相容性,有望作为一种新的基因药物载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号