首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究利用相图计算的CALPHAD方法和真空电弧熔炼技术,设计并制备了Cux(Fe0.64Ni0.32Co0.04)100-x(x=30, 45, 60, wt. %)系列合金。实验研究了该系列合金在不同热处理工艺时的显微组织,热导率以及热膨胀系数。研究结果表明:Cu-Fe64Ni32Co4系列合金在600 °C和800 °C时效处理后均为fcc富铜相和fcc富因瓦(铁镍钴)相组成的各向同性的多晶合金。该系列合金在1000 °C淬火并在600 °C时效处理50 h后,其热膨胀系数变化范围为6.88~12.36×10-6 K-1;热导率变化范围为22.91~56.13 W.m-1.K-1;其热导率明显高于因瓦合金,其中Cu30(Fe0.64Ni0.32Co0.04)70与 Cu45(Fe0.64Ni0.32Co0.04)55合金的热膨胀系数可以与电子封装中半导体材料的热膨胀系数相匹配。  相似文献   

2.
The anisotropy compensation and magnetostrictive properties of Tb1−xHox(Fe0.8Co0.2)2 (0.60 ≤ x ≤ 1.0) alloys have been investigated. The easy magnetization direction (EMD) at room temperature rotates from the 〈1 1 1〉 axis (x ≤ 0.75) to the 〈1 0 0〉 axis (x ≥ 0.90) through an intermediate state 〈1 1 0〉, subjected to the anisotropy compensation between Tb3+ and Ho3+ ions. Composition anisotropy compensation is realized near x = 0.75. The Tb0.25Ho0.75(Fe0.8Co0.2)2 alloy has a minimum anisotropy and a large spontaneous magnetostriction coefficient λ111 (≈740 ppm) at room temperature. The strong 〈1 1 1〉-oriented 1-3 epoxy-bonded composite has been fabricated by curing under a moderate magnetic field. A high low-field magnetostriction of about 400 ppm at 3 kOe is obtained for the 1-3 epoxy/Tb0.25Ho0.75(Fe0.8Co0.2)2 composite with 40-vol% alloy particles, which can be attributed to the low magnetic anisotropy, EMD lying along 〈1 1 1〉 direction, the strong 〈1 1 1〉-textured orientation and the chain structure.  相似文献   

3.
对制备出纳米晶组织的Sm_5Co_(19)Hf_(0.4)合金和Sm_5Co_(19)Hf_(0.4)CNTs_(0.4)合金的显微组织、晶体结构和磁性能等进行了系统表征分析。结果表明:Hf元素和碳纳米管(CNTs)的混合添加不引起Sm_5Co_(19)合金Ce_5Co_(19)型结构发生相分解,且使纳米晶组织中的晶粒变得细小,晶粒尺寸均匀分布。能谱分析表明,添加的CNTs进入纳米晶Sm_5Co_(19)Hf_(0.4)CNTs_(0.4)合金的晶界区域,产生晶界钉扎作用,显著提高纳米晶Sm_5Co_(19)合金的矫顽力。晶体结构精修表明,Hf元素进入纳米晶Sm_5Co_(19)合金晶胞结构的Sm空位,导致晶格参数a、b、c均减小,而轴比c/a增加,使Hf掺杂的纳米晶合金的磁晶各向异性增大,具有提高纳米晶合金的矫顽力的作用。本研究结果对设计制备具有高磁晶各向异性、高内禀矫顽力的Sm-Co基合金具有明确指导意义。  相似文献   

4.
Microobjects (strips) were formed by contact photolithography using Та/Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Ru/Co90Fe10/Fe50Mn50/Ta spin-valves prepared by magnetron sputtering. A mutually perpendicular arrangement of uniaxial and unidirectional anisotropy axes in microobjects has been formed using two different thermomagnetic treatment regimes. The magnetoresistive sensitivity of spin valve and spin-valve-based microobject has been found to depend on the mutual arrangement of the easy magnetization axis and direction of magnetic field applied upon thermomagnetic treatment. The obtained data have been interpreted taking into account changes in the induced anisotropy and anisotropy due to the shape of the microobject.  相似文献   

5.
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 °C for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.  相似文献   

6.
This paper focuses on the magnetic, structural and microstructural studies of amorphous/nanocrystalline Ni63Fe13Mo4Nb20 powders prepared by mechanical alloying. The ball-milling of Ni, Fe, Mo and Nb powders leads to alloying the element powders, the nanocrystalline and an amorphization matrix with Mo element up to 120 h followed by the strain and thermal-induced nucleation of a single nanocrystalline Ni-based phase from the amorphous matrix at 190 h. The results showed that the saturation magnetization decreases as a result of the electronic interactions between magnetic and non-magnetic elements and finally increases by the partial crystallization of the amorphous matrix. The coercive force increases as the milling time increases and finally decreases due to sub-grains formation.  相似文献   

7.
采用区熔定向凝固方法, 以480 mm/h速度制备了<110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金棒. 通过测试在0---0.325 T磁场范围内合金 棒的应力--应变回线, 计算了应力幅σm分别为-10,-30和-50 MPa的阻尼系数Δ W/W. 结果表明, 零磁场下的Δ W/W最大; 随磁场强度增大, 同一σm条件下的Δ W/W逐渐降低. 在低磁场中, Δ W/W随σm的增加而降低; 在高磁场中,  Δ W/W随σm的增加而升高. 利用不同预压应力下的磁致伸缩--磁化强度关系曲线, 分析了磁场--应力复合加载条件下非180°磁畴和畴壁的运动形式. 依据局部内应力理论, 解释了合金棒的磁机械阻尼系数随外磁场强度和应力幅值变化的规律.  相似文献   

8.
《Scripta materialia》2001,44(8-9):1383-1387
The effect of Co addition on the magnetic properties and microstructure for the nanocrystalline Fe93-xNb2(Nd,Pr)2B2 (x = 5–7) alloys produced by crystallization of an amorphous phase has been investigated. The melt-spun Fe93-x-yCoxNb2(Nd,Pr)yB5 (x = 0–20 and y = 5–7 at.%) ribbons form a nanocomposite structure of bcc-(Fe,Co) and Pr2(Fe,Co)14B with grain sizes of 10–50 nm after annealing at 973-1023 K, showing a smooth J-H curve typical for the exchange-spring magnet. The alloys containing Co show a high energy product ((BH)max) upon annealing at a relatively low temperature presumably because the precipitation temperature of each phase decreases by addition of CO. The (BH)max values after annealing at an optimum temperature are improved by addition of 5–20 at. % Co for the Fe86-xCoxNb2(Nd,Pr)7B5 and Fe88-xCoxNb2Nd5B5 alloys. The improvement of (BH)max by Co addition is attributed to the enhancement of Jr, presumably resulting from the increase in magnetization of each phase and the exchange-coupled region between the soft and hard magnetic phases.  相似文献   

9.
New Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses (HE-BMGs) with superior soft magnetic and mechanical properties are developed. The HE-BMGs show high glass transition temperature and wide supercooled liquid region (ΔTx). Fully glassy rods with diameters up to 1.5 mm were fabricated for the Fe25Co25Ni25(B0.7Si0.3)25 alloy by copper mold casting method. The HE-BMGs exhibit high yield strength of ∼3624 MPa with large plastic strain of ∼3.1%, which is superior to the pre-developed HE-BMGs. The alloys also possess good soft magnetic properties, i.e., rather high saturation magnetization of ∼0.87 T, low coercive force of ∼1.1 A/m, and high effective permeability at 1 kHz of ∼19,800. This combination of these excellent properties gives the new HE-BMGs good promise for both scientific and engineering applications.  相似文献   

10.
Py/Co1/Cu/Co2 films (Py is the Ni63Co25Fe12 ternary permalloy) were produced by magnetron sputtering on glass substrates. The thicknesses of layers are d Cu = 0.7–4 nm, \(d_{Co_2 } \) = 2–12 nm, and d Py = 2–12 nm. The polar diagrams of the films with d Cu = 1.2nm demonstrate a biaxial anisotropy, whereas the films with 2.0 ≤ d Cu ≤ 3.0 nm are characterized by uniaxial anisotropy. The first maximum in the Δρ/ρ = f(d Cu) curve is due to an antiferromagnetic coupling between the Py/Co1 and Co2 layers; the second maximum is due to the independent magnetization reversal of the Py/Co1 soft magnetic bilayer and Co2 hard magnetic layer. The magnetoresistance measured along the EA exhibits an almost twofold increase with increasing thickness of ferromagnetic layers. The coercive force was shown to decrease with increasing thickness of the Co2 layer, whereas the magnetic anisotropy field is unchanged. The coercive force and induced magnetic anisotropy were estimated theoretically taking into account changes in the mean-square amplitude and roughness period with increasing thickness of the Co2 layer. The results obtained agree with experimental data.  相似文献   

11.
硫族钙钛矿是一类新兴的半导体功能材料,具有独特的电子结构与光电性质。本文采用溶胶-凝胶法结合化学气相反应的方法制备了硫族钙钛矿BaZrS3纳米结构,并且借助掺杂的方法获得了BaZr1-xFexS3磁性半导体,并对其结构和光、磁学等性能进行研究。结果表明,对氧化物钙钛矿BaZrO3进行硫化处理,即用同族的S元素替代O元素,样品仍然可以表现出钙钛矿结构,而且硫化处理可以起到降低带隙宽度的作用。同时用具有局域磁矩的3d过渡族金属元素,如Fe进行钙钛矿B位阳离子掺杂,通过控制Fe的掺杂量同样可以系统地调控样品的带隙宽度,而且对于BaZr99.7Fe0.03S3和BaZr99.5Fe0.05S3样品表现出了室温铁磁性。  相似文献   

12.
Influence of 1 h annealing in vacuum on magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 melt spun ribbons were carefully investigated. It was shown that in all cases soft magnetic properties can be significantly enhanced by applying 1-h annealing at characteristic temperatures Top. This optimization annealing causes that permeability increases more than 15-times and magnetic losses (tangent of loss angle) achieves a minimum in relation to the as quenched state. Using structural examinations (X-ray and HRTEM) it was shown that for the Fe75Cu1Nb2Si13B9 alloy the optimized microstructure corresponds to a nanocrystalline αFe(Si) phase whereas in other alloys to a relaxed amorphous phase free of iron nanograins. As a consequence of this fact the Fe76Nb2Si13B9 and Fe75Ag1Nb2Si13B9 alloys show higher plasticity in comparison to the nanocrystalline Fe75Cu1Nb2Si13B9 alloy. Temperatures of the first stage of crystallization, and related diffusion parameters were determined using measurements of resistivity versus temperature with different heating rates.  相似文献   

13.
Starting with a Ho3(Fe1−xCox)29−yCry, (x,y) = (0.6,4.5) and (0.8,5.5) nominal stoichiometry, a disordered variant of the hexagonal 2:17 phase (Th2Ni17-type, S.G. P63/mmc) occurs, since both the monoclinic 3:29 and the transition-metal-rich disordered Th2Ni17-type hexagonal compounds have the same rare earth to transition metal ratio, 1:9.7. The magnetic properties and the magnetocrystalline anisotropy of these compounds have been investigated. The anisotropy constant, K's, and the anisotropy field, μ0HA, values have been deduced from the magnetization curves measured on powder samples magnetically aligned in a rotating magnetic field. The compound with (x,y) = (0.8,5.5) shows a compensation point at about 55 K. The magnetic anisotropy of both compounds is that of easy-plane from room temperature to low temperatures down to 5 K.  相似文献   

14.
The magnetization of a Dy2Fe14Si3 single crystal was measured at 4.2 K in pulsed fields up to 51 T along the principal axes. The compound orders ferrimagnetically at 500 K, has a spontaneous magnetic moment of 8 μB/f.u. (at 4.2 K) and exhibits a very large magnetic anisotropy, 〈1 0 0〉 being the easy axis. In fields applied along the 〈1 0 0〉 and 〈1 2 0〉 axes, field-induced phase transitions are observed at 33 T and at 39 T, respectively. The c-axis magnetization curve crosses the easy-axis curve at 19 T. At higher fields, for all directions, the magnetization continues to increase due to further bending of the sublattice moments. Temperature evolution of magnetic anisotropy and magnetic hysteresis are discussed as well.  相似文献   

15.
The influence of milling and subsequent annealing on the microstructural and magnetic properties of Fe90Co10 and Fe65Co35 alloys is investigated. After milling for 8 h a body-centred cubic nanostructured Fe–Co alloy forms with an average crystallite size of about 12 nm. The magnetization saturation (MS) increases 16% for Fe65Co35 and 5% for Fe90Co10 alloys by milling for 8 h. Subsequent annealing of Fe90Co10 and Fe65Co35 powders for 105 min at 550 °C improves the MS about 6 and 11%, respectively. Before annealing, the coercivity increases (up to 60 Oe) by milling for 3 h, followed by a reduction on milling for longer periods (45 h). At the initial stage of the heating, a sharp decrease in HC to 8–10 Oe occurs due to the relief of internal strain. Further heating leads to an increase in the coercivity (intermediate times) followed by a slight diminution on heating for final stage.  相似文献   

16.
In order to improve the cycling stability of AB5 type alloy electrodes, rapid quenching technology and new alloy composition design were employed. A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65Mn0.4Al0.2Ti0.05(FeB)0.1 was prepared by vacuum magnetic levitation melting under high purity argon atmosphere, followed by rapid quenching at different cooling rates. XRD results show that all alloys exhibit the single-phase CaCu5-type structure. Electrochemical tests indicate that rapid quenching can slightly improve the cycling life of the alloy. Nevertheless, the high-rate dischargeability of the quenched alloys is lower than that of the as-cast alloy.  相似文献   

17.
In this article, we review our recent studies on new rare-earth intermetallic compounds including the Ga, Si substituted 2:17-type compounds, their nitrides, carbides, and the Sm3 (Fe,Ti)29N5 compounds. Much of our recent work is focused on the Sm2(Fe,Ga)17Cx alloys where we used melt spinning and subsequent annealing to obtain high coercivity. The highest coercivity obtained so far was in Sm2Fe14Ga3C2.5 with a value of 12.8 kOe at room temperature. The off-stoichiometric Sm2Fe14-xCoxSi2Ny nitrides maintain the Th2Zn17-type structure but with a unit-cell expansion ΔVV up to 5 % compared to the host materials. The Sm2Fe14-xCoxSi2Cz carbides maintain the Tr2Zn17-type structure when z = 1 and transform to the BaCd11-type structure when z = 2. A very large anisotropy field with an applied magnetic field (Ha) value of 227 kOe for Sm2Fe14Si2N2.6 and 276 kOe for Sm2Fe10Co4Si2N2.3 is observed at low temperature (1.5 K). The Sm3(Fe,Ti)29N5 compound and its nitrides show very interesting magnetic properties. Both of these compounds exhibit ferromagnetic ordering with Curie temperature (Tc) of 486 and 750 K, respectively. The room temperature saturation magnetization is 119 emu/g for the parent compounds and 145 emu/g for the nitrides. The easy magnetization direction changes from planar to uniaxial upon nitrogenation. The anisotropy field for the nitrides is 12 T at room temperature and 25 T at 4.2 K.  相似文献   

18.
The magnetic nanocomposites of (1 − x)Ni0.5Zn0.5Fe2O4/xSiO2 (x = 0-0.2) were synthesized by the citrate-gel process and their absorption behavior of bovine serum albumin (BSA) was investigated by UV spectroscopy at room temperature. The gel precursor and resultant nanocomposites were characterized by FTIR, XRD, TEM and BET techniques. The results show that the single ferrite phase of Ni0.5Zn0.5Fe2O4 is formed at 400 °C, with high saturation magnetization and small coercivity. A porous, amorphous silica layer is located at the ferrite nanograin boundaries, with the silica content increasing from 0 to 0.20, the average grain size of Ni0.5Zn0.5Fe2O4 calcined at 400 °C reduced from about 18-8 nm. Consequently, the specific surface area of the nanocomposites ascends clearly with the increase of silica content, which is largely contributed by the increase in the thickness of the porous silica layer. The Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites demonstrate a better adsorption capability than the bare Ni0.5Zn0.5Fe2O4 nanoparticles for BSA. With the increase of the silica content from 0 to 0.05 and the specific surface area from about 49-57 m2/g, the BSA adsorption capability of the Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites calcined at 400 °C improve dramatically from 22 to 49 mg/g. However, with a further increase of the silica content from 0.05 to 0.2, the specific surface area increase from about 57-120 m2/g, the BSA adsorption for the nanocomposites remains around 49 mg/g, owing to the pores in the porous silica layer which are too small to let the BSA protein molecules in.  相似文献   

19.
Composites with ferromagnetic nanoparticles, Fe and Fe50Ni50, dispersed in Al2O3 have been synthesized by a solution phase technique. The structure and magnetic properties of these composites with varying fractions of Al2O3 have been investigated. Both Fe and Fe50Ni50 nanoparticles are amorphous in the as-prepared state and become crystalline on heat treating with near equilibrium lattice parameters of 0.287 nm and 0.358 nm respectively. The interparticle distance increases with increasing Al2O3 from 0 wt.% to 20 wt.%. The size of Fe nanoparticles is 40 nm while the Fe50Ni50 nanoparticles are 20 nm in size. The Fe and Fe50Ni50 nanoparticles dispersed composites are found to be ferromagnetic at room temperature both in the as-prepared and heat treated conditions with clear coercive fields of 5.5–35 × 103 A m−1. The saturation magnetization increases by orders of magnitude on heat treatment, for e.g. from <1.0 emu g−1 to 143.4 emu g−1 for Fe–15 wt.% Al2O3 and 95.6 emu g−1 for Fe50Ni50–15 wt.% Al2O3. The Fe-composites exhibit a Curie transition at 1000 K while the Fe50Ni50 composites exhibit a transition at 880 K, both temperatures close to bulk values.  相似文献   

20.
Nanocrystalline alloys (Fe0.6Co0.4)86Hf7B6Cu1 and (Fe0.7Co0.3)88Hf7B4Cu1 have been investigated to obtain materials with improved thermal stability and new features. In order to make the alloys produced by melt quenching on a rotating wheel nanocrystalline, they have been subjected to heat (HT) and thermomechanical (TMechT) treatments. The effect of HT and TMechT conditions on the magnetic properties, thermal stability, and structure of the alloys has been studied. The optimal HT conditions for obtaining the minimum values of the coercive force (H c) in the alloys have been determined. It is shown that TMechT of the alloys leads to the induced longitudinal magnetic anisotropy with the axis of easy magnetization along the long side of the ribbon in the studied temperature range of 520–620°C. It has been established that the alloys (Fe0.6Co0.4)86Hf7B6Cu1 and (Fe0.7Co0.3)88Hf7B4Cu1 are thermally unstable at temperatures above 500°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号