首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new method for detecting protein-protein interactions in intact mammalian cells; the approach is based on protein splicing-induced complementation of rationally designed fragments of firefly luciferase. The protein splicing is a posttranslational protein modification through which inteins (internal proteins) are excised out from a precursor fusion protein, ligating the flanking exteins (external proteins) into a contiguous polypeptide. As the intein, naturally split DnaE from Synechocystis sp. PCC6803 was used: The N- and C-terminal DnaE, each fused respectively to N- and C-terminal fragments of split luciferase, were connected to proteins of interest. In this approach, protein-protein interactions trigger the folding of DnaE intein, wherein the protein splicing occurs and thereby the extein of ligated luciferase recovers its enzymatic activity. To test the applicability of this split luciferase complementation, we used insulin-induced interaction between known binding partners, phosphorylated insulin receptor substrate 1 (IRS-1) and its target N-terminal SH2 domain of PI 3-kinase. Enzymatic luciferase activity triggered by insulin served to monitor the interaction between IRS-1 and the SH2 domain in an insulin dose-dependent manner, of which amount was assessed by the luminescent intensity. This provides a convenient method to study phosphorylation of any protein or interactions of integral membrane proteins, a class of molecules that has been difficult to study by existing biochemical or genetic methods. High-throughput drug screening and quantitative analysis for a specific pathway in tyrosine phosphorylation of IRS-1 in insulin signaling are also made possible in this system.  相似文献   

2.
Protein-protein interactions are crucial for all cellular events. To analyze protein-protein interactions in live mammalian cells, we developed novel protein translocation biosensors composed of glutathione S-transferase, mutants of GFP, and a rational combination of nuclear import and export signals. Nuclear accumulation of the cytoplasmic biosensors served as the reliable indicator, which was induced by the formation of protein complexes and could easily be detected by fluorescence microscopy. The efficacy of the system was systematically investigated by mapping the p53/mdm2 protein interaction interface. Specificity and general applicability of the biosensors were confirmed by studying additional classes of protein interaction domains (IDs), e.g., the leucine zipper IDs of Jun/Fos and the coiled-coil ID of Bcr-Abl in different cell lines. Importantly, we found that, in comparison to protein complementation assays, our system proved highly efficient and reversible and thus suited for the identification of molecular decoys to prevent specific protein-protein interactions in living cells. Reversibility was demonstrated in competition experiments by overexpressing the specific IDs or by the application of a p53/mdm2 protein interaction inhibitor. Thus, besides the convenient mapping of protein IDs in living cells, the modular translocation system has great potential to be employed in numerous cell-based assays for the identification of small-molecule protein interaction inhibitors as potential novel therapeutics.  相似文献   

3.
We describe a new method with general applicability for monitoring any protein-protein interaction in vivo. The principle is based on a protein splicing system, which involves a self-catalyzed excision of protein splicing elements, or inteins, from flanking polypeptide sequences, or exteins, leading to formation of a new protein in which the exteins are linked directly by a peptide bond. As the exteins, split N- and C-terminal halves of enhanced green fluorescent protein (EGFP) were used. When a single peptide consisting of an intein derived from Saccharomyces cerevisiae intervening the split EGFP was expressed in Escherichia coli, the two external regions of EGFP were ligated, thereby forming the EGFP corresponding fluorophore. Genetic alteration of the intein, which involved large deletion of the central region encoding 104 amino acids, was performed. In the expression of the residual N- and C-terminal intein fragments each fused to the split EGFP exteins, the splicing in trans did not proceed. However, upon coexpression of calmodulin and its target peptide M13, each connected to the N- and C-terminal inteins, fluorescence of EGFP was observed. These results demonstrate that interaction of calmodulin and M13 triggers the refolding of intein, which induces the protein splicing, thereby folding the ligated extein correctly for yielding the EGFP fluorophore. This method opens a new way not only to screen protein-protein interactions but also to visualize the interaction in vivo in transgenic animals.  相似文献   

4.
A mammalian two-hybrid system was developed for high-throughput screening of compounds that disrupt specific protein-protein interactions. The existing mammalian systems are unsatisfactory for drug screening due to nonregulated expression of interacting proteins. To construct a tightly regulated system, the tetracycline repressor was fused with the inhibitory KRAB domain as a suppressor. The binding of the suppressor to the tet operator entirely blocked expression of two interacting proteins. When both the inducer doxycycline and drugs were added to the culture, the reporter gene was either activated by interaction of the paired proteins with ineffective drugs or remained silent due to disruption of the protein interactions by the effective drugs. We demonstrate that interactions of the type I receptor for TGFbeta with FKBP12 and the epidermal growth factor receptor (EGFR) with p85 are effectively disrupted by FK506 and EGFR kinase inhibitor AG1478, respectively. The power of this system for drug screening was further demonstrated by rapid identification of inhibitors from a druglike library for the receptor kinases.  相似文献   

5.
Protein-protein interactions are an intricate part of biological pathways and have become important targets for drug discovery. Here we present a two-stage magnetic bead assay to functionally screen small-molecule mixtures for modulators of protein-based interactions, with simultaneous affinity-based isolation of active compounds and identification by mass spectrometry. Proteins of interest interact in solution prior to the addition of Ni(II)-functionalized magnetic beads to recover an intact protein-protein complex through affinity capture of a polyhistidine-tagged primary target ("protein-complex fishing"). Protein-complex fishing, utilizing His(6)-tagged calmodulin (CaM) as the primary (bait) protein and melittin (Mel) as the target, was used to screen a mass-encoded library of 1000 bioactive compounds (50 mixtures, 20 compounds each) and successfully identified three known antagonists, three naturally occurring phenolic compounds previously reported to disrupt CaM-activated phosphodiesterase activity, and two newly identified modulators of the CaM-Mel interaction, methylbenzethonium and pempidine tartrate. The ability to produce quantitative inhibition data is also shown through the development of dose-dependent response curves and the determination of inhibition constants (K(I)) for the novel compound methylbenzethonium (K(I) = 14-49 nM) and two known antagonists, calmidazolium (K(I) = 1.7-7.5 nM) and trifluoperazine (K(I) = 1.2-3.0 μM), with the latter two values being in close agreement with literature values.  相似文献   

6.
For spatial and quantitative kinetic analysis of protein-protein interactions (PPIs) in living mammalian cells, a method was developed in which PPI-induced complementation of split Renilla luciferase triggers spontaneous emission of luminescence using a cell membrane permeable substrate, coelenterazine. This split Renilla luciferase complementation readout was shown to work for locating a PPI between the tyrosine-phosphorylated peptide (Y941) of IRS-1 and the SH2 domain of PI3K among insulin signaling pathways in living Chinese hamster ovary cells overexpressing human insulin receptors (CHO-HIR). It was thereby found that the insulin-stimulated interaction occurred near the plasma membrane in the cytosol.  相似文献   

7.
A highly sensitive microarray system for detecting protein-protein interactions has been developed. This method was successfully applied to analyze the interactions of heme-regulated phosphodiesterase from Escherichia coli (Ec DOS). To immobilize (His)6-Tag fused Ec DOS, anti-(His)6-Tag monoclonal antibody (anti-(His)6-Tag mAb) was initially immobilized on the solid surface, and (His)6-Tag fused Ec DOS was fixed by antigen-antibody interactions. For this experiment, ProteoChip, generally suitable for antibody immobilization, was used as solid substrate. In this report, we confirm the antibody immobilization ability of ProteoChip and specific binding to the F(c) region of the antibody. Based on this finding, interdomain interactions between Ec DOS and the isolated heme-bound PAS domain were investigated on the solid surface. Ec DOS immobilized via anti-(His)6-Tag mAb maintained interactions with the PAS fragment, in contrast to directly immobilized Ec DOS in the absence of anti-(His)6-Tag mAb. Heme-redox-sensitive interactions between Ec DOS and the PAS fragment were additionally detected using anti-(His)6-Tag mAb as a mediator. Our results collectively suggest that the immobilization method using anti-Tag antibody is suitable for maintaining native protein characteristics to facilitate elucidation of their structures and functions on solid surfaces.  相似文献   

8.
A new mass spectrometry identifiable cross-linking strategy has been developed to study protein-protein interactions. The new cross-linker was designed to have two low-energy MS/MS-cleavable bonds in the spacer chain to provide three primary benefits: First, a reporter tag can be released from cross-link due to cleavage of the two labile bonds in the spacer chain. Second, a relatively simple MS/MS spectrum can be generated owing to favorable cleavage of labile bonds. And finally, the cross-linked peptide chains are dissociated from each other, and each then can be fragmented separately to get sequence information. Therefore, this novel type of cross-linker was named protein interaction reporter (PIR). To this end, two RINK groups were utilized to make our first-generation cross-linker using solid-phase peptide synthesis chemistry. The RINK group contains a bond more labile than peptide bonds during low-energy activation. The new cross-linker was applied to cross-link ribonuclease S (RNase S), a noncovalent complex of S-peptide and S-protein. The results demonstrated that the new cross-linker effectively reacted with RNase S to generate various types of cross-linked products. More importantly, the cross-linked peptides successfully released reporter ions during selective MS/MS conditions, and the dissociated peptide chains remained intact during MS(2), thus enabling MS(3) to be performed subsequently. In addition, dead-end, intra-, and inter-cross-linked peptides can be distinguished by analyzing MS/MS spectra.  相似文献   

9.
The nonspecific self-association of proteins in nanoflow electrospray ionization mass spectrometry (nanoES-MS), and the influence of experimental conditions thereon, are investigated using the protein ubiquitin (Ubq) as a model system. Extents of nonspecific protein association generally increase with protein concentration and, interestingly, with decreasing ES spray potential. The extent of self-association is also sensitive to the duration of the accumulation event in an external rf hexapole. Notably, the relative abundance of metal (Na+ and K+) adducts generally increases with the size of nonspecific Ubq multimer. This result suggests that the gaseous ions of monomeric and nonspecific multimeric Ubq have, on average, different ES droplet histories, with monomer ions originating earlier in the ES process than the nonspecific multimeric complexes. This finding forms the basis for a new method for distinguishing between specific and nonspecific protein complexes in ES-MS. A reporter molecule (Mrep), which does not bind specifically to the proteins and protein complexes of interest, is added to the ES solution at high concentration. The distribution of Mrep bound nonspecifically to gaseous ions of the proteins and protein complexes, as determined from the ES mass spectrum, is used to determine whether a given protein complex originates in solution or whether it forms from nonspecific binding during the ES process. The method is demonstrated in cases where the ions of protein complexes detected by nanoES-MS originate exclusively from nonspecific association, exclusively from specific interactions in solution, or from both specific and nonspecific interactions.  相似文献   

10.
Gold nanoparticles hold great promise for studying protein-protein interactions because of their intrinsic optical properties. Pink when in a homogeneous suspension, the solution turns blue-gray when particles are drawn close together, for example, when immobilized proteins specifically interact with each other. However, the nanoparticle stability, size, and method of protein attachment contribute to the unreliable outcome of current assays. To overcome these hurdles, we developed novel and reliable methods first to synthesize homogenous particles of optimal diameter and second to apply a heterologous NTA-Ni-SAM coating for controlled orientation and optimal presentation of histidine-tagged proteins. Both methods were proven to greatly enhance assay sensitivity and specificity by increasing the signal and minimizing the nonspecific binding. Our assay reproducibly detected known protein-protein interactions and unambiguously identified small molecules that inhibited them. We believe our gold nanoparticle bioassay is a versatile and trustworthy new platform for analyzing protein-protein interactions and high-throughput screening of small-molecule inhibitors.  相似文献   

11.
Zhang X  Teng Y  Fu Y  Xu L  Zhang S  He B  Wang C  Zhang W 《Analytical chemistry》2010,82(22):9455-9460
In this article, we report a novel lectin-based biosensor for electrochemical assay of cancer-associated glycosylation by comparative study of mannose and sialic acid expression on normal and cancer cells derived from human lung, liver, and prostate. Using a sandwich format, high sensitivity and selectivity were achieved by combining the lectin-based biosensor with the {lectin-Au-Th} bioconjugates featuring lectin and thionine (Th) labels linked to gold nanoparticles (AuNPs) for signal amplification. The proposed strategy demonstrated that mannose exhibited high expression levels in both normal and cancer cells, while sialic acid was more abundant in cancer cells as compared to normal ones. The results were in good agreement with those from fluorescent microscopy studies. The differences in the two glycan expression indicated that sialic acid could serve as a potential biomarker for early cancer detection. The lectin-based biosensor was also successfully used to quantify cancer cells and evaluate the average amount of sialic acid on single cell surface, which could supply significant information on glycan functions in cancer progression. Overall, the lectin-based electrochemical biosensor provides an effective pathway to analyze glycan expression on living cells and may greatly facilitate the medical diagnosis and treatment in early process of cancer.  相似文献   

12.
Zhao H  Hong N  Lu W  Zeng H  Song J  Hong Y 《Analytical chemistry》2012,84(2):987-993
Vector systems allowing simultaneously for rapid drug selection, cell labeling, and reporter assay are highly desirable in biomedical research including stem cell biology. Here, we present such a vector system including pCVpf or pCVpr, plasmids that express pf or pr, a fusion protein between puromycin acetyltransferase and green or red fluorescent protein from CV, the human cytomegalovirus enhancer/promoter. Transfection with pCVpf or pCVpr produced a ~10% efficiency of gene transfer. A 2-day pulse puromycin selection resulted in ~13-fold enrichment for transgenic cells, and continuous puromycin selection produced stable transgenic stem cell clones with retained pluripotency. Furthermore, we developed a PAC assay protocol for quantification of transgene expression. To test the usefulness for cell labeling and PAC assay in vivo, we constructed pVASpf containing pf linked to the regulatory sequence of medaka germ gene vasa and generated transgenic fish with visible GFP expression in germ cells. PAC assay revealed the highest expression in the testis. Interestingly, PAC activity was also detectable in somatic organs including the eye, which was validated by fluorescence in situ hybridization. Therefore, the pf and pr vectors provide a useful system for simultaneous drug selection, live labeling, and reporter assay in vitro and in vivo.  相似文献   

13.
Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue which can induce a myriad of cellular changes leading to false interpretation of experimental results. Here, we present a simple and sensitive assay to monitor mycoplasma contamination (mycosensor) based on degradation of the Gaussia luciferase reporter in the conditioned medium of cells. This assay proved to be more sensitive as compared to a commercially available bioluminescent assay in detecting mycoplasma contamination in seven different cell lines. The Gaussia luciferase mycosensor assay provides an easy tool to monitor mammalian cell contaminants in a high-throughput fashion.  相似文献   

14.
We developed a genetically encoded bioluminescence indicator for monitoring the release of proteins from the mitochondria in living cells. The principle of this method is based on reconstitution of split Renilla reniformis luciferase (Rluc) fragments by protein splicing with an Ssp DnaE intein. A target mitochondrial protein connected with an N-terminal fragment of Rluc and an N-terminal fragment of DnaE is expressed in mammalian cells. If the target protein is released from the mitochondria toward the cytosol upon stimulation with a specific chemical, the N-terminal Rluc meets the C-terminal Rluc connected with C-terminal DnaE in the cytosol, and thereby, the full-length Rluc is reconstituted by protein splicing. The extent of release of the target fusion protein is evaluated by measuring activities of the reconstituted Rluc. To test the feasibility of this method, here we monitored the release of Smac/DIABLO protein from mitochondria during apoptosis in living cells and mice. The present method allowed high-throughput screening of an apoptosis-inducing reagent, staurosporine, and imaging of the Smac/DIABLO release in cells and in living mice. This rapid analysis can be used for screening and assaying chemicals that would increase or inhibit the release of mitochondrial proteins in living cells and animals.  相似文献   

15.
The fabrication of a novel biochip, designed for dissection of multiprotein complex formation, is reported. An array of metal chelators has been produced by piezo dispensing of a bis-nitrilotriacetic acid (bis-NTA) thiol on evaporated gold thin films, prestructured with a microcontact printed grid of eicosanethiols. The bis-NTA thiol is mixed in various proportions with an inert, tri(ethylene glycol) hexadecane thiol, and the thickness and morphological homogeneity of the dispensed layers are characterized by imaging ellipsometry before and after back-filling with the same inert thiol and subsequent rinsing. It is found that the dispensed areas display a monotonic increase in thickness with increasing molar fraction of bis-NTA in the dispensing solution, and they are consistently a few Angstr?ms thicker than those prepared at the same molar fraction by solution self-assembly under equilibrium-like conditions. The bulkiness of the bis-NTA tail group and the short period of time available for chemisorption and in-plane organization of the dispensed thiols are most likely responsible for the observed difference in thickness. Moreover, the functional properties of this biochip are demonstrated by studying multiple protein-protein interactions using imaging surface plasmon resonance. The subunits of the type I interferon receptor are immobilized as a composition array determined by the surface concentration of bis-NTA in the array elements. Ligand dissociation kinetics depends on the receptor surface concentration, which is ascribed to the formation of a ternary complex by simultaneous interaction of the ligand with the two receptor subunits. Thus, multiplexed monitoring of binding phenomena at various compositions (receptor densities) offers a powerful tool to dissect protein-protein interactions.  相似文献   

16.
Droplet-based microfluidic systems have emerged as a powerful platform for performing high-throughput biological experimentation. In addition, fluorescence polarization has been shown to be effective in reporting a diversity of bimolecular events such as protein-protein, DNA-protein, DNA-DNA, receptor-ligand, enzyme-substrate, and protein-drug interactions. Herein, we report the use of fluorescence polarization for high-throughput protein-protein interaction analysis in a droplet-based microfluidic system. To demonstrate the efficacy of the approach, we investigate the interaction between angiogenin (ANG) and antiangiogenin antibody (anti-ANG Ab) and demonstrate the efficient extraction of dissociation constants (K(D) = 10.4 ± 3.3 nM) within short time periods.  相似文献   

17.
Xu G  Chance MR 《Analytical chemistry》2004,76(5):1213-1221
Hydroxyl radical-mediated footprinting coupled with mass spectroscopic analysis is a new technique for mapping protein surfaces, identifying structural changes modulated by protein-ligand binding, and mapping protein-ligand interfaces in solution. In this study, we examine the radiolytic oxidation of aspartic and glutamic acid residues to probe their potential use as structural probes in footprinting experiments. Model peptides containing Asp or Glu were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The radiolysis products were characterized by electrospray mass spectrometry including tandem mass spectrometry. Both Asp and Glu are susceptible to radiolytic oxidization by gamma-rays or synchrotron X-rays. Radiolysis results primarily in the oxidative decarboxylation of the side chain carboxyl group and formation of an aldehyde group at the carbon next to the original carboxyl group, giving rise to a characteristic product with a -30 Da mass change. A similar oxidative decarboxylation also takes place for amino acids with C-terminal carboxyl groups. The methylene groups in the Asp and Glu side chains also undergo oxygen addition forming ketone or alcohol groups with mass changes of +14 and +16 Da, respectively. Characterizing the oxidation reactions of these two acidic residues extends the number of useful side chain probes for hydroxyl radical-mediated protein footprinting from 10 (Cys, Met, Trp, Tyr, Phe, Arg, Leu, Pro, His, Lys) to 12 amino acid residues, thus enhancing our ability to map protein surface structure and in combination with previously identified basic amino acid probes can be used to examine molecular details of protein-protein interactions that are driven by electrostatics.  相似文献   

18.
Protein footprinting utilizing hydroxyl radicals coupled with mass spectrometry has become a powerful technique for mapping the solvent accessible surface of proteins and examining protein-protein interactions in solution. Hydroxyl radicals generated by radiolysis or chemical methods efficiently react with many amino acid residue side chains, including the aromatic and sulfur-containing residues along with proline and leucine, generating stable oxidation products that are valuable probes for examining protein structure. In this study, we examine the radiolytic oxidation chemistry of histidine, lysine, and arginine for comparison with their metal-catalyzed oxidation products. Model peptides containing arginine, histidine, and lysine were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source. The rates of oxidation and the radiolysis products were primarily characterized by electrospray mass spectrometry including tandem mass spectrometry. Arginine is very sensitive to radiolytic oxidation, giving rise to a characteristic product with a 43 Da mass reduction as a result of the loss of guanidino group and conversion to gamma-glutamyl semialdehyde, consistent with previous metal-catalyzed oxidation studies. Histidine was oxidized to generate a mixture of products with characteristic mass changes primarily involving rupture of and addition to the imidazole ring. Lysine was converted to hydroxylysine or carbonylysine by radiolysis. The development of methods to probe these residues due to their high frequency of occurrence, their typical presence on the protein surface, and their frequent participation in protein-protein interactions considerably extends the utility of protein footprinting.  相似文献   

19.
Kim SB  Otani Y  Umezawa Y  Tao H 《Analytical chemistry》2007,79(13):4820-4826
Click beetle luciferase (CBLuc) is insensitive to pH, temperature, and heavy metals, and emits a stable, highly tissue-transparent red light with luciferin in physiological circumstances. Thus, the luminescence signal is optimal for a bioanalytical index reporting the magnitude of a signal transduction of interest. Here, we validated a single-molecule-format complementation system of split CBLuc to study signal-controlled protein-protein (peptide) interactions. First, we generated 10 pairs of N- and C-terminal fragments of CBLuc to examine respectively whether a significant recovery of the activity occurs through the intramolecular complementation. The ligand binding domain of androgen receptor (AR LBD) was connected to a functional peptide sequence through a flexible linker. The fusion protein was then sandwiched between the dissected N- and C-terminal fragments of CBLuc. Androgen induces the association between AR LBD and a functional peptide and the subsequent complementation of N- and C-terminal fragments of split CBLuc inside the single-molecule-format probe, which restores the activities of CBLuc. The examination about the dissection sites of CBLuc revealed that the dissection positions next to the amino acids D412 and I439 admit a stable recovery of CBLuc activity through an intramolecular complementation. The ligand sensitivity and kinetics of the single molecular probe with split CBLuc were discussed in various cell lines and in different protein-peptide binding models. The probe is applicable to developing biotherapeutic agents on the AR signaling and for screening adverse chemicals that possibly influence the signal transduction of proteins in living cells or animals.  相似文献   

20.
Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号