首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Supercapacitors are becoming more popular in the field of energy storage day by day. Thanks to their superior features such as fast charge–discharge, high capacities, and stable structures. Especially, supercapacitors designed using biomass as the electrode material are more preferred in this field because they are cheap, abundant, environmentally friendly, high capacity, and have a long cycle life. In this study, two supercapacitor cells were developed using freshwater algae biomass. In the first stage, supercapacitor electrodes were prepared by Co-doped Chlorella vulgaris (Chl-Co), and in the second stage, electrodes were prepared by Co-doped to H3PO4-washed Chlorella vulgaris (Chl-Co-H3PO4). 6 M KOH solution was used as the electrolyte. Electrochemical characterization results of the electrodes were obtained very close to the ideal supercapacitor characteristic. The capacitance values of the Chl-Co electrode were measured as 80 F/g for 1 A/g, but after the activation by H3PO4, the capacitance rose to 169.7 F/g for 1 A/g. The produced electrodes are promising for energy storage in terms of environmental pollution, cost, stability, and capacity.

  相似文献   

2.

In this reported study, novel multiple dimensional ZIF-67/rGO/NiPc composite materials were prepared for supercapacitors. The electrochemical test showed that the ZIF-67/rGO/NiPc electrode achieved a remarkable specific capacitance of 860 F g?1 at a current density of 1 A g?1, which was superior to that of the rGO/NiPc and ZIF-67/rGO electrodes. An asymmetric supercapacitor based on ZIF-67/rGO/NiPc//activated carbon exhibited a high specific capacitance of 200.67 F g?1 and an extraordinary energy density of 62.7 Wh kg?1 at a corresponding power density of 750 W kg?1. In addition, the device demonstrated 94.6% capacitance retention after 5000 cycles. The assembled asymmetric supercapacitors could easily powered a green light-emitting diode. This work revealed a promising research route for the rational construction of multiple dimensioned high-performance electrodes materials for use in new energy storage devices.

  相似文献   

3.
Manganese sulfide (MnS) with high specific capacitance and low-cost merits, has been investigated as a potential electroactive material for supercapacitor. However, in practical application, MnS has been suffering from some disadvantageous issues such as insufficient electrical conductivity, serious particle agglomeration as well as huge volume change during continuous charges and discharges, which resulted in a limited specific capacitance, shortened working life and inferior rate performance. Engineering electrode materials with controlled nanostructure and composition is pivotal to improve electrichemical performance of supercapacitors. This paper introduces a facile in situ sulfuration method to fabricate MnS/NSC composite with Mn-hexamethylene tetramine coordination framework as precursor. The results indicated that MnS nanoparticles were highly dispersed and incorporated into nitrogen, sulfur-doped carbon microsheets in MnS/NSC composite. Carbon matrix effectively dispersed and confined the MnS nanoparticles, thus inhibiting aggregation, relieving volume change and retaining structural integrity. Moreover, the 2D conductive carbon matrix reduced the diffusion distance for ions and ensured fast electron delivery. As a result, MnS/NSC electrode delivered a tremendously boosted electrochemical performance for supercapacitor. A large capacitance value about 1881.8F/g was achieved at 1A/g. Even cycling for 3000 loops at 40 A/g, MnS/NSC electrode retained a large capacitance of 404.3F/g. Furthermore, an asymmetric capacitor based on assembly of MnS/NSC composite cathode and activated carbon anode was fabricated. As tested under a current density of 0.1 A/g, it delivered a capacitance of ~ 110.1F/g and achieved an energy density of 12.4 Wh kg?1 along with a power density of 3.03 kW kg?1. These results demonstrate the potential utilization of MnS/NSC composite as electrodes for energy conversion and storage devices and open up a route for material design for future energy storage devices.  相似文献   

4.
On the molecular origin of supercapacitance in nanoporous carbon electrodes   总被引:1,自引:0,他引:1  
Lightweight, low-cost supercapacitors with the capability of rapidly storing a large amount of electrical energy can contribute to meeting continuous energy demands and effectively levelling the cyclic nature of renewable energy sources. The excellent electrochemical performance of supercapacitors is due to a reversible ion adsorption in porous carbon electrodes. Recently, it was demonstrated that ions from the electrolyte could enter sub nanometre pores, greatly increasing the capacitance. However, the molecular mechanism of this enhancement remains poorly understood. Here we provide the first quantitative picture of the structure of an ionic liquid adsorbed inside realistically modelled microporous carbon electrodes. We show how the separation of the positive and negative ions occurs inside the porous disordered carbons, yielding much higher capacitance values (125 F g(-1)) than with simpler electrode geometries. The proposed mechanism opens the door for the design of materials with improved energy storage capabilities. It also sheds new light on situations where ion adsorption in porous structures or membranes plays a role.  相似文献   

5.
Graphene electrode–based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene–carbon fiber nanostructure is developed. The vertically aligned graphene–carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte‐ion diffusion with a gravimetric capacitance of 333.3 F g?1 and an areal capacitance of 166 mF cm?2. The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long‐lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen‐containing surface moieties and α‐Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg?1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high‐performing flexible graphene electrodes for wearable energy storage applications.  相似文献   

6.
Construction of transition metal oxides-based carbonaceous nanostructures has been regarded as one of the most effective strategies to prepare the electrodes for high-performance supercapacitors. In this work, NiCo2O4 embedded carbon nanofibers (NiCo2O4-CNFs) are synthesized by the combination of one-step electrospinning and following thermal treatment. The obtained NiCo2O4-CNFs are evaluated as electrodes for supercapacitors. The testing results indicate that the NiCo2O4-CNFs present high specific capacitance of 836 F g?1 (vs. 38.02 F g?1 for carbon nanofibers (CNFs)) at 5 A g?1, and outstanding cycling ability with 80.9% retention after 2000 cycle times. Such excellent performances benefit from the integration of electric double layer capacitors and pseudocapacitors. This kind of NiCo2O4-embedded carbon nanofibers can serve as a promising candidate for electrode materials for supercapacitors.  相似文献   

7.
Single-walled carbon nanotube (SWNT) thin film electrodes have been printed on flexible substrates and cloth fabrics by using SWNT inks and an off-the-shelf inkjet printer, with features of controlled pattern geometry (0.4–6 cm2), location, controllable thickness (20–200 nm), and tunable electrical conductivity. The as-printed SWNT films were then sandwiched together with a piece of printable polymer electrolyte to form flexible and wearable supercapacitors, which displayed good capacitive behavior even after 1,000 charge/discharge cycles. Furthermore, a simple and efficient route to produce ruthenium oxide (RuO2) nanowire/SWNT hybrid films has been developed, and it was found that the knee frequency of the hybrid thin film electrodes can reach 1,500 Hz, which is much higher than the knee frequency of the bare SWNT electrodes (˜158 Hz). In addition, with the integration of RuO2 nanowires, the performance of the printed SWNT supercapacitor was significantly improved in terms of its specific capacitance of 138 F/g, power density of 96 kW/kg, and energy density of 18.8 Wh/kg. The results indicate the potential of printable energy storage devices and their significant promise for application in wearable energy storage devices.   相似文献   

8.
Solid-state supercapacitors are fabricated using transparent polymethyl methacrylate (PMMA) films decorated by breath figures BF, as an electrode and polyvinyl alcohol (PVA)-H2SO4 as an electrolyte. The holes on the surface of the transparent PMMA created by BF method have diameters of 0.5–10 μm. Graphene is deposited by spray coating using a dispersion mixture of graphene layers. The fabricated electrodes were characterized by cyclic voltammetry (CV), galvanostatic charge–discharge, electrochemical impedance spectroscopy, charge stability and life time for evaluating their supercapacitance performance. From CV data at 5 mV/s scan rate, high specific capacitance equal to 344 for BFPMMA/G F/g and, 45 F/g for PMMA/G has been measured. By the same way, energy densities have been measured as 430 and 56.25 Wh/kg for the mentioned electrodes, respectively.  相似文献   

9.
Manganese oxide/carbon composite materials were prepared by introducing the carbon powders into the potentiodynamical anodic co-deposited manganese oxide in 0.5 mol L− 1 MnSO4 and 0.5 mol L− 1 H2SO4 mixed solution at 40 °C. The surface morphology and structure of the composite material were examined by scanning electron microscope and X-ray diffraction. Cyclic voltammetry tests and electrochemical impedance measurements were applied to investigate the performance of the composite electrodes with different ratios of manganese oxide and carbon. These composite materials with rough surface, which consisted of approximately amorphous manganese oxide, were confirmed to possess the ideal capacitive property. The highest specific capacitance of manganese oxide/carbon composite electrode was up to 410 F g− 1 in 1.0 mol L− 1 Na2SO4 electrolyte at the scan rate 10 mV s− 1. The synthesized composite materials exhibited ideal capacitive behavior indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

10.
Yu G  Hu L  Liu N  Wang H  Vosgueritchian M  Yang Y  Cui Y  Bao Z 《Nano letters》2011,11(10):4438-4442
MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ~20% and ~45%, respectively, with values as high as ~380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices.  相似文献   

11.
Kang YJ  Chung H  Han CH  Kim W 《Nanotechnology》2012,23(6):065401
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.  相似文献   

12.
Six electrodes with a varying amount (5, 10, and 15 wt.%) of conducting carbon nanotubes (CNT) and carbon nanofibers (CNF) were fabricated and their performance evaluated against a control sample that was devoid of any conducting material. The goal of this work was to determine the correlation between electrode conductivity and capacitance in 1 M tetraethyl ammonium tetrafluoroborate (TEABF4) in propylene carbonate (PC) electrolyte. CNT electrodes exhibit the lowest electrical resistance, while CNF electrodes had the highest capacitance. The specific capacitance (120-140 F/g) increased monotonically up to 2.5 V. An inverse correlation between electrical resistance and capacitance was observed for various concentrations. The electrodes were characterized using CV, EIS, SEM, and BET analysis.  相似文献   

13.
We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.  相似文献   

14.
In pursuing excellent supercapacitor electrodes, we designed a series of MoS2/CoS2 composites consisting of flower-liked MoS2 and octahedron-shaped CoS2 through a facile one-step hydrothermal method and investigated the electrochemical performance of the samples with various hydrothermal time. Due to the coupling of two metal species and a big amount of well-developed CoS2 and MoS2, the results indicated that the MoS2/CoS2 composites electrodes exhibited the best electrochemical performance with a large specific capacitance of 490 F/g at 2 mV/s or 400 F/g at 10 A/g among all samples as the hydrothermal time reached 48 h (MCS48). Furthermore, the retention of MCS48 is 93.1% after 10000 cycles at 10 A/g, which manifests the excellent cycling stability. The outstanding electrochemical performance of MCS48 indicates that it could be a very promising and novel energy storage material for supercapacitors in the future.  相似文献   

15.
The microstructure and morphology of sol-gel derived manganese dioxide (MnO2) xerogels were affected by the synthesis conditions and post synthesis heat treatment. Manganese dioxide nanoparticles in sol that were dialyzed to more acidic pH (pH 5.7) value were observed to self-assemble into nanowires, whereas non-dialyzed sols remained nanoparticulate in nature. MnO2 xerogels of disordered nanowire network exhibited comparatively higher porosity and BET surface areas. The electrochemical properties of both MnO2 nanowire and nanoparticle thin-film electrodes were evaluated using cyclic voltammetry in a mild aqueous electrolyte (0.1 M Na2SO4). The charge capacities of MnO2 nanowire-based thin-film electrodes were substantially higher (~ 800 F/g) than those of nanoparticulate thin-film electrodes (~ 700 F/g).  相似文献   

16.
High-performance nanostructured supercapacitors on a sponge   总被引:1,自引:0,他引:1  
Chen W  Rakhi RB  Hu L  Xie X  Cui Y  Alshareef HN 《Nano letters》2011,11(12):5165-5172
A simple and scalable method has been developed to fabricate nanostructured MnO2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1,230 F/g (based on the mass of MnO2) can be reached. Capacitors based on CNT-sponge substrates (without MnO2) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100,000 cycles under a scan rate of 10 V/s. The MnO2-CNT-sponge supercapacitors show only 4% of degradation after 10,000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO2-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems.  相似文献   

17.
Micrometer‐sized electrochemical capacitors have recently attracted attention due to their possible applications in micro‐electronic devices. Here, a new approach to large‐scale fabrication of high‐capacitance, two‐dimensional MoS2 film‐based micro‐supercapacitors is demonstrated via simple and low‐cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro‐supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ~0.45 μm. The optimum MoS2‐based micro‐supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm?2 (volumetric capacitance of 178 F cm?3) and excellent cyclic performance, superior to reported graphene‐based micro‐supercapacitors. This strategy could provide a good opportunity to develop various micro‐/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro‐electronic devices.  相似文献   

18.
Rational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS2/NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS2/NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm?2, the MoS2/NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO2‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS2/NiS hybrid microspheres exhibit a specific capacitance of 1493 F g?1 at current density of 0.2 A g?1, and remain 1165 F g?1 even at a large current density of 2 A g?1, implying outstanding charge storage capacity and excellent rate performance. The MoS2/NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg?1 at a power density of 155.7 W kg?1, and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.  相似文献   

19.
Heteroatom-doped porous carbon materials with distinctive surface properties and capacitive behavior have been accepted as promising candidates for supercapacitor electrodes. Currently, the researches mainly focus on developing facile synthetic method and unveiling the structure-activity relationship to further elevate their capacitive performance. Here, the B, N co-doped porous carbon sheet (BN-PCS) is constructed by one-pot pyrolysis of agar in KCl/KHCO3 molten salt system. In this process, the urea acts as directing agent to guide the formation of 2D sheet morphology, and the decomposition of KHCO3 and boric acid creates rich micro- and mesopores in the carbon framework. The specific capacitance of optimized BN-PCS reaches 361.1 F g−1 at a current density of 0.5 A g−1 in an aqueous KOH electrolyte. Impressively, the fabricated symmetrical supercapacitor affords a maximum energy density of 43.5 Wh kg−1 at the power density of 375.0 W kg−1 in 1.0 mol L−1 TEABF4/AN electrolyte. It also achieves excellent long-term stability with capacitance retention of 91.1% and Columbic efficiency of 100% over 10 000 cycles. This study indicates one-pot molten salt method is effective in engineering advanced carbon materials for high-performance energy storage devices.  相似文献   

20.
碳纳米管表面沉积氧化镍及其超电容器的电化学行为   总被引:11,自引:1,他引:10  
通过催化裂解法制备了碳纳米管并进一步制备了碳纳米管薄膜电极.基于该种材料的超电容器电极比容量达到36F/g.研究了在碳纳米管薄膜基体上使用电化学方法沉积氧化镍的新工艺,制备出碳纳米管和氧化镍的复合电极.电化学测试证明复合电极的比容量提高到52F/g以上且基于这种复合电极的超电容器具有极低的自放电率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号