首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies using human liver microsomes and nine recombinant human cytochrome P450 (CYP) isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4) were performed to identify the CYP isoform(s) involved in the major metabolic pathway (3-hydroxylation) of quinine in humans. Eadie-Hofstee plots for the formation of 3-hydroxyquinine exhibited apparently monophasic behavior for all of the 10 different microsomal samples studies. There was interindividual variability in the kinetic parameters, as follows: 1.8-, 3.2- and 3.5-fold for K(m) Vmax and Vmax/K(m), respectively. The mean +/- S.D. values for K(m), Vmax and Vmax/K(m) were 106.1 +/- 19.3 microM, 1.33 +/- 0.48 nmol/mg protein/min and 12.8 +/- 5.1 microliters/mg protein/min, respectively. With 10 different human liver microsomes, the relationships between the 3-hydroxylation of quinine and the metabolic activities for substrates of the respective CYP isoforms were evaluated. The 3-hydroxylation of quinine showed an excellent correlation (r = 0.986, P < .001) with 6 beta-hydroxylation of testosterone, a marker substrate for CYP3A4. A significant correlation (r = 0.768, P < .01) between the quinine 3-hydroxylase and S-mephenytoin 4'-hydroxylase activities was also observed. However, no significant correlation existed between the 3-hydroxylation of quinine and the oxidative activities for substrates for CYP1A2 (phenacetin), 2C9 (diclofenac), 2D6 (desipramine) and 2E1 (chlorzoxazone). Ketoconazole and troleandomycin (inhibitors of CYP3A4) inhibited the 3-hydroxylation of quinine by human liver microsomes with respective mean IC50 values of 0.026 microM and 28.9 microM. Anti-CYP3A antibodies strongly inhibited quinine 3-hydroxylation, whereas weak inhibition was observed in the presence of S-mephenytoin or anti-CYP2C antibodies. Among the nine recombinant human CYP isoforms, CYP3A4 exhibited the highest catalytic activity with respect to the 3-hydroxylation of quinine, compared with the minor activity of CYP2C19 and little discernible or no effect of other CYP isoforms. Collectively, these data suggest that the 3-hydroxylation of quinine is mediated mainly by CYP3A4 and to a minor extent by CYP2C19. Other CYP isoforms used herein appear to be of negligible importance in this major pathway of quinine in humans.  相似文献   

2.
1. Thiabendazole is a widely used food preservative and anthelmintic drug for breeding animal species. In order to characterize precisely the cytochrome P450 isozyme(s) involved in its major route of metabolism, a rapid and sensitive spectrofluorimetric method was developed for the simultaneous determination of thiabendazole and its main hepatic metabolite 5-hydroxythiabendazole. 2. The kinetics of thiabendazole 5-hydroxylation were determined in microsomal preparations from control rabbits or animals previously treated with either beta-naphthoflavone, isosafrole, phenobarbital, rifampicin or clofibrate. These treatments led to specific induction of CYP1A1, 1A2, 2B4, 3A6 and 4A1 respectively. 3. By considering this panel of characterised microsomal preparations, only those obtained from BNF-treated rabbits exhibited an increase in thiabendazole 5-hydroxylase activity Ethoxyresorufin O-deethylation in these microsomes was solely inhibited by thiabendazole. These argue for a specific involvement of the CYP1A subfamily. 4. In the CYP1A subfamily, CYP1A2 appears to be responsible for basal 5-hydroxylation and further unidentified metabolism of thiabendazole in control livers. However, the major involvement of CYP1A1 is supported by the following characteristics of 5-hydroxylation of thiabendazole: (1) the correlation with CYP1A1 expression and (2) the inhibition by ellipticine and not by furafylline, inhibitors of CYP1A1 and CYP1A2 respectively. 5. All these data demonstrated that the rabbit cytochrome P4501A is predominantly involved in thiabendazole 5-hydroxylation which has been suspected to be critical in terms of safety of the parent drug.  相似文献   

3.
Cyclobenzaprine (Flexeril) is a muscle relaxant, possessing a tricyclic structure. Numerous therapeutic agents containing this structure are known to be metabolized by polymorphic cytochrome P4502D6. The aim of this study was to determine if cytochrome P4502D6 and other isoforms are involved in the metabolism of cyclobenzaprine in human liver microsomes. Selective cytochrome P450 inhibitors for CYP1A1/2 (furafylline and 7,8-benzoflavone) and CYP3A4 (troleandomycin, gestodene, and ketoconazole) inhibited the formation of desmethylcyclobenzaprine, a major metabolite of cyclobenzaprine, in human liver microsomes. Antibodies directed against CYP1A1/2 and CYP3A4 inhibited the demethylation reaction whereas anti-human CYP2C9/10, CYP2C19, and CYP2E1 antibodies did not show any inhibitory effects. When a panel of microsomes prepared from human B-lymphoblastoid cells that expressed specific human cytochrome P450 isoforms were used, only microsomes containing cytochromes P4501A2, 2D6, and 3A4 catalyzed N-demethylation. In addition, demethylation catalyzed by these recombinant cytochromes P450 can be completely inhibited with selective inhibitors at concentrations as low as 1 to 20 microM. Interestingly, cyclobenzaprine N-demethylation was significantly correlated with caffeine 3-demethylation (1A2) and testosterone 6 beta-hydroxylation (3A4) but not with dextromethorphan O-demethylation (2D6) in human liver microsomes. To further determine the involvement of cytochrome P4502D6 in cyclobenzaprine metabolism, liver microsomes from a human that lacked CYP2D6 enzyme activities was included in this study. The data showed that cyclobenzaprine N-demethylation still occurred in the incubation with this microsome. These results suggested that cytochrome P4502D6 plays only a minor role in cyclobenzaprine N-demethylation whereas 3A4 and 1A2 are primarily responsible for cyclobenzaprine metabolism in human liver microsomes. Due to the minimum involvement of CYP2D6 in the vitro metabolism of cyclobenzaprine, the polymorphism of cytochrome P4502D6 in man should not be of muci concern in the clinical use of cyclobenzaprine.  相似文献   

4.
5.
Using human liver microsomes (HLMs) and recombinant human cytochrome P450 (CYP450) isoforms, we identified the major route of pimozide metabolism, the CYP450 isoforms involved, and documented the inhibitory effect of pimozide on CYP450 isoforms. Pimozide was predominantly N-dealkylated to 1,3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one (DHPBI). The formation rate of DHPBI showed biphasic kinetics in HLMs, which suggests the participation of at least two activities. These were characterized as high-affinity (K(m1) and Vmax1) and low-affinity (K(m2) and Vmax2) components. The ratio of Vmax1 (14 pmol/min/mg protein)/K(m1) (0.73 microM) was 5.2 times higher than the ratio of Vmax2 (244 pmol/min/mg protein)/K(m2) (34 microM). K(m2) was 91 times higher than K(m1). The formation rate of DHPBI from 25 microM pimozide in nine human livers correlated significantly with the catalytic activity of CYP3A (Spearman r = 0.79, P = .028), but not with other isoforms. Potent inhibition of DHPBI formation from 10 microM pimozide was observed with ketoconazole (88%), troleandomycin (79%), furafylline (48%) and a combination of furafylline and ketoconazole (96%). Recombinant human CYP3A4 catalyzed DHPBI formation from 10 microM pimozide at the highest rate (V = 2.2 +/- 0.89 pmol/min/pmol P450) followed by CYP1A2 (V = 0.23 +/- 0.08 pmol/min/pmol P450), but other isoforms tested did not. The K(m) values derived with recombinant CYP3A4 and CYP1A2 were 5.7 microM and 36.1 microM, respectively. Pimozide itself was a potent inhibitor of CYP2D6 in HLMs when preincubated for 15 min (Ki = 0.75 +/- 0.98 microM) and a moderate inhibitor of CYP3A (Ki = 76.7 +/- 34.5 microM), with no significant effect on other isoforms tested. Our results suggest that pimozide metabolism is catalyzed mainly by CYP3A, but CYP1A2 also contributes. Pimozide metabolism is likely to be subject to interindividual variability in CYP3A and CYP1A2 expression and to drug interactions involving these isoforms. Pimozide itself may inhibit the metabolism of drugs that are substrates of CYP2D6.  相似文献   

6.
Cytochromes P450 3A4 and 3A5, the dominant drug-metabolizing enzymes in the human liver, share >85% primary amino acid sequence identity yet exhibit different regioselectivity toward aflatoxin B1 (AFB1) biotransformation [Gillam et al., (1995) Arch. Biochem. Biophys. 317, 374-384]. P450 3A4 apparently prefers AFB1 3alpha-hydroxylation, which results in detoxification and subsequent elimination of the hepatotoxin, over AFB1 exo-8,9-oxidation. In contrast, P450 3A5 is incapable of appreciable AFB1 3alpha-hydroxylation and converts it predominantly to the exo-8,9-oxide which is genotoxic. To elucidate the structural features that govern the regioselectivity of the human liver 3A enzymes in AFB1 metabolism and bioactivation, a combination of approaches including sequence alignment, homology modeling, and site-directed mutagenesis was employed. Specifically, the switch in AFB1 regioselectivity was examined after individual substitution of the divergent amino acids in each of the six putative substrate recognition sites (SRSs) of P450 3A4 with the corresponding amino acid of P450 3A5. Of the P450 3A4 mutants examined, P107S, F108L, N206S, L210F, V376T, S478D, and L479T mutations resulted in a significant switch of P450 3A4 regioselectivity toward that of P450 3A5. The results confirmed the importance of some of these residues in substrate contact in the active site, with residue N206 (SRS-2) being critical for AFB1 detoxification via 3alpha-hydroxylation. Moreover, the P450 3A4 mutant N206S most closely mimicked P450 3A5, not only in its regioselectivity of AFB1 metabolism but also in its overall functional capacity. Furthermore, the other SRS-2 mutant, L210F, also resembled P450 3A5 in its overall AFB1 metabolism and regioselectivity. These findings reveal that a single P450 3A5 SRS domain (SRS-2) is capable of conferring the P450 3A5 phenotype on P450 3A4. In addition, some of these P450 3A4 mutations that affected AFB1 regioselectivity had little influence on testosterone 6beta-hydroxylation, thereby confirming that each substrate-P450 active site fit is indeed unique.  相似文献   

7.
The present study examined the utility of an immunoblot method for quantitation of cytochrome P450 isozymes in archived liver samples as a bioassay of exposure to halogenated hydrocarbons. Hepatic microsomes were prepared from 44 archived polar bear (Ursus maritimus) liver homogenates that had been stored at approximately -40 degrees C for 9-10 years and analyzed on blots probed with antibodies to rat cytochromes P450 1A1 and P450 2B1. The results revealed a positive correlation between cytochrome P450 1A and total polychlorinated biphenyl (PCB) levels in the archived liver samples, suggesting that cytochrome P450 1A was induced in polar bears by environmental exposure to PCBs.  相似文献   

8.
9.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12-15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles.  相似文献   

10.
BACKGROUND: We compared our results with bullous vs diffuse emphysema by performing a bilateral thoracoscopic stapled volume reduction technique in 15 patients (age 45-80, 10 males, five females). METHODS: Eight patients demonstrated bullous emphysema and seven patients diffuse emphysema. Lung reduction was performed with a bilateral thoracoscopic stapled technique utilizing bovine pericardium in the supine position. RESULTS: Comparison of the bullous versus diffuse groups revealed no significant differences in means for the following variables: length of air leak (7.5 vs 3.3 days); length of stay (8.1 vs 6.5 days); pre-op FEV1, (23% vs 22%); pre-op dyspnea index (3.4 vs 3.6). At 3 months the bullous subset had a highly significant improvement (p < 0.007) in FEV1 (88%) compared with the diffuse subset FEV1 (59%). CONCLUSIONS: These early results suggest that patients with bullous emphysema are at no greater risk and demonstrate a significantly greater improvement in FEV1 than patients with diffuse emphysema.  相似文献   

11.
The metabolism of imipramine by human liver microsomes was examined using a combination of five strategies. Human hepatic microsomes produced N-desmethylimipramine (84%), 2-hydroxyimipramine (10%), and 10-hydroxyimipramine (6%). Preincubation of human hepatocytes in culture with beta-naphthoflavone and macrolides exclusively induced the formation of desmethylimpramine (552%, p < 0.05, and 234%, p < 0.003, respectively). Correlations were obtained between rates of imipramine demethylation and cytochrome P-450 (P-450) 1A2 (r = 0.88, p < 0.001) and P-450 3A (r = 0.80, p < 0.02) concentrations in human liver microsomal preparations from 13 different subjects. Anti-P-450 1A2 and anti-P-450 3A antibodies selectively inhibited N-demethylation (80% and 60%, respectively). N-Demethylation was completely inhibited when anti-1A2 and anti-3A were added simultaneously. Kinetic studies with human microsomes confirm the contribution of two different enzymes in the N-demethylation. The Km of 1A2 was similar to the high affinity Km in human liver microsomes, whereas the Km of 3A was similar to the low affinity Km in human liver microsomes. P-450 1A2 was apparently more efficient than 3A4 (lower Km and higher Vmax) but was expressed in much lower concentration. Human P-450s 1A2 and 3A4 expressed in yeast efficiently produced desmethylimipramine. These results suggest that P-450 1A2 and P-450 3A4 are the major enzymes involved in imipramine N-demethylation in human hepatic microsomes. Similar experiments were conducted using P-450 2D6, and they confirmed that P-450 2D6 catalyzes imipramine 2-hydroxylation. Interindividual variations in 3A4 hepatic content may explain the large variations in imipramine blood levels observed after uniform dosages and thus may explain the variations in clinical efficacy. Caution might be advised in the clinical use of tricyclic antidepressants when drugs are also administered that induce or inhibit P-450s 3A4 and 1A2.  相似文献   

12.
In vitro studies were conducted to identify the hepatic cytochrome P450 (CYP) forms involved in the oxidative metabolism of [14C]ABT-761 and its N-dehydroxylated metabolite, [14C]ABT-438, by human liver microsomes. The two compounds were metabolized by parallel pathways, to form the corresponding methylene bridge hydroxy metabolites. There was no evidence of sulfoxidation and/or ring hydroxylation. Over the ABT-761 and ABT-438 concentration ranges studied (1-300 microM), the rate of NADPH-dependent hydroxylation was linear with respect to substrate concentration ([S]) and did not conform to saturable Michaelis-Menten kinetics. Under these conditions ([S] < KM), the intrinsic clearance (Vmax/KM) of ABT-438 was 10-fold higher than that of ABT-761 (1.7 +/- 0.8 vs. 0.17 +/- 0.06 microl/min/mg, mean +/- SD, N = 3 livers). The hydroxylation of both compounds was shown to be highly correlated (r = 0.83, p < 0.01, N = 11 different human livers) with CYP3A-selective erythromycin N-demethylase activity, and the correlation between ABT-761 hydroxylation and tolbutamide hydroxylase (CYP2C9-selective) activity (r = 0.63, p < 0.05, N = 10) was also statistically significant. Ketoconazole (2.0 microM), a CYP3A-selective inhibitor, inhibited the hydroxylation of both compounds by 53-67%, and sulfaphenazole (CYP2C9-selective) decreased activity by 10-20%. By comparison, alpha-naphthoflavone, a known activator of CYP3A, stimulated the hydroxylation of ABT-761 (8-fold) and ABT-438 (4-fold). In addition, the abundance-normalized rates of cDNA-expressed CYP-dependent metabolism indicated that hydroxylation was largely mediated (66-86%) by CYP3A(4). Therefore, it is concluded that the hydroxylation of ABT-761 and ABT-438 (相似文献   

13.
Pyridine derivatives are widely used solvents and precursors for the synthesis of chemicals of industrial importance. Oxidized metabolites have been implicated in the observed toxicity of pyridines and are known to induce drug-metabolizing enzymes in rat liver. In this study the three isomeric picoline (methylpyridine) N-oxides, as major oxidized metabolites of 2-, 3- and 4-picoline, were evaluated as inducers of cytochrome P450 (CYP) enzymes in rat liver. After a single dose of 100 mg/kg 24 h before sacrifice the 3- and 4-isomers were effective inducers of microsomal substrate oxidations associated with the phenobarbital-inducible CYPs 2B; upregulation of CYP2B protein was confirmed by immunoblotting. In contrast, the 2-isomer did not increase CYP2B protein or activity in rat liver but CYP2E1 protein expression was upregulated by the isomers to 160-200% of control. The three chemicals increased aniline 4-hydroxylation activity in rat liver, which is consistent with induction of CYPs 2B or 2E1 and 4-nitrophenol 2-hydroxylation activity was increased in microsomal fractions from 3- and 4-picoline N-oxide-treated rats. The activities of several other CYPs were also determined and CYP1A-dependent 7-ethylresorufin O-deethylation was increased (to approximately 6- and 2-fold of control) by the 3- and 4-isomer, respectively, whereas the activity of CYP3A-mediated androstenedione 6beta-hydroxylation was decreased by the agents--most notably by the 2-isomer. During NADPH-supported oxidation of CCl4, lipid peroxidation was increased in microsomes from 3- and 4-picoline N-oxide-pretreated rats and was modulated in vitro by the CYP2B inhibitor orphenadrine, but not by the CYP2E1 inhibitor 4-methylpyrazole. These findings establish that particular isomers of picoline N-oxide rapidly upregulate CYP2B or, to a lesser extent, CYP2E1 and implicate CYP2B in the enhanced lipid peroxidation observed in microsomes from rats treated with 3- and 4-picoline N-oxides. Such induction process may contribute to the hepatotoxicity of pyridines by enhancing the capacity for microsomal lipid peroxidation.  相似文献   

14.
The authors posit that cellular edema is the major contributor to brain swelling in diffuse head injury and that the contribution of vasogenic edema may be overemphasized. The objective of this study was to determine the early time course of blood-brain barrier (BBB) changes in diffuse closed head injury and to what extent barrier permeability is affected by the secondary insults of hypoxia and hypotension. The BBB disruption was quantified and visualized using T1-weighted magnetic resonance (MR) imaging following intravenous administration of the MR contrast agent gadolinium-diethylenetriamine pentaacetic acid. To avoid the effect of blood volume changes, the maximum signal intensity (SI) enhancement was used to calculate the difference in BBB disruption. A new impact-acceleration model was used to induce closed head injury. Forty-five adult Sprague-Dawley rats were separated into four groups: Group I, sham operated (four animals), Group II, hypoxia and hypotension (four animals), Group III, trauma only (23 animals), and Group IV, trauma coupled with hypoxia and hypotension (14 animals). After trauma was induced, a 30-minute insult of hypoxia (PaO2 40 mm Hg) and hypotension (mean arterial blood pressure 30 mm Hg) was imposed, after which the animals were resuscitated. In the trauma-induced animals, the SI increased dramatically immediately after impact. By 15 minutes permeability decreased exponentially and by 30 minutes it was equal to that of control animals. When trauma was coupled with secondary insult, the SI enhancement was lower after the trauma, consistent with reduced blood pressure and blood flow. However, the SI increased dramatically on reperfusion and was equal to that of control by 60 minutes after the combined insult. In conclusion, the authors suggest that closed head injury is associated with a rapid and transient BBB opening that begins at the time of the trauma and lasts no more than 30 minutes. It has also been shown that addition of posttraumatic secondary insult-hypoxia and hypotension-prolongs the time of BBB breakdown after closed head injury. The authors further conclude that MR imaging is an excellent technique to follow (time resolution 1-1.5 minutes) the evolution of trauma-induced BBB damage noninvasively from as early as a few minutes up to hours or even longer after the trauma occurs.  相似文献   

15.
A variety of chemicals, including triacetyloleandomycin (TAO), alpha-naphthoflavone (ANF), and diethyldithiocarbamate (DDC), are widely used as inhibitory probes for select individual human cytochrome P450 (CYP) enzymes, despite the fact that the selectivity of these inhibitors has not been rigorously evaluated. In the present study we take advantage of recent advances in cDNA-directed human P450 expression to evaluate directly the P450 form selectivity of TAO, ANF, and DDC, using a panel of 10 individual cDNA-expressed human P450s. Under experimental conditions known to yield maximal TAO complexation with P450 hemoproteins, TAO (20 microM) inhibited the catalytic activity of expressed CYPs 3A3, 3A4, and 3A5, whereas it did not affect CYPs 1A1, 1A2, 2A6, 2B6, 2C8, 2C9, or 2E1 activity. ANF inhibited not only CYPs 1A1 and 1A2 (IC50 = 0.4-0.5 microM), but it was also similarly effective against CYPs 2C8 and 2C9. Increasing the concentration of ANF to 10 microM led to inhibition of CYP2A6 and CYP2B6. Although a previous study suggested that DDC is a selective inhibitor of CYP2E1, the present investigation shows that at concentrations required to inhibit CYP2E1 (IC50 approximately 125 microM when preincubated with NADPH), DDC also inhibited CYPs 1A1, 1A2, 2A6, 2B6, 2C8, 3A3, and 3A4. Decreasing the concentration of DDC to 10 microM, however, led to inhibition of CYP2A6 (65% inhibition) and CYP2B6 (50% inhibition), but none of the other P450s examined, including CYP2E1. Overall, these results establish that (a) TAO is a selective inhibitor of the human CYP3A subfamily; (b) ANF potently inhibits CYP2C8 and CYP2C9, in addition to CYPs 1A1 and 1A2; and (c) DDC cannot be employed as a diagnostic inhibitory probe for CYP2E1.  相似文献   

16.
17.
The human clearance of omeprazole and lansoprazole is conducted primarily by the hepatic cytochrome P450 (CYP) system. Efficacy data indicate few differences between these two drugs, but they may exhibit discrete drug interaction profiles. To compare the potency and specificity of these drugs as inhibitors of CYP isoforms, we performed in vitro studies with human liver microsomal preparations. Both drugs were potent, competitive inhibitors of CYP2C19, as measured by the conversion of S-mephenytoin to 4-hydroxymephenytoin (k(i) = 3.1 +/- 2.2 microM for omeprazole, K(i) = 3.2 +/- 1.3 microM for lansoprazole). For omeprazole, the highest concentration at which >70% inhibition of CYP2C19 was observed with no significant inhibitory effect on other isoforms was at least 20 times greater than K(i). Both drugs were competitive inhibitors of CYP2C9-catalyzed conversion of tolbutamide to 4-hydroxytolbutamide (K(i) = 40.1 +/- 14.8 microM for omeprazole, K(i) = 52.1 +/- 1.4 microM for lansoprazole) and were noncompetitive inhibitors of CYP3A-catalyzed conversion of dextromethorphan to 3-methoxymorphinan (K(i) = 84.4 +/- 4.0 microM for omeprazole, K(i) = 170.4 +/- 7.1 microM for lansoprazole). Lansoprazole was at least 5 times more potent (K(i) = 44.7 +/- 22.0 microM) than omeprazole (k(i) = 240.7 +/- 102.0 microM) as an inhibitor of CYP2D6-mediated conversion of dextromethorphan to dextrorphan. No inhibition of CYP1A2, assessed by measuring the conversion of phenacetin to acetaminophen, was noted. Our data suggest that whereas the inhibitory profiles of these two drugs are similar, lansoprazole may be the more important in vitro inhibitor of CYP2D6. Since its inhibition is very potent and has a broad "window of selectivity," omeprazole seems to be a useful, selective inhibitor of CYP2C19.  相似文献   

18.
Ropivacaine is a new amide-type local anesthetic agent. Unlike bupivacaine and mepivacaine, two structurally similar local anesthetic compounds, ropivacaine is exclusively the S-(-)-enantiomer. Ropivacaine is predominantly eliminated by extensive metabolism in the liver, with only 1% of the dose being excreted unchanged in the urine of humans. Four of the metabolites formed in human liver microsomes were identified as 3-OH-ropivacaine, 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and 2',6'-pipecoloxylidide (PPX). The enzymes involved in the human metabolism of ropivacaine have not been identified. To ascertain which forms of cytochrome P450 are involved, ropivacaine was incubated with human microsomes from 10 different livers having different cytochrome P450 activities. A strong correlation was found between the formation of 3-OH-ropivacaine and CYP1A (r = 0.87-0.89) and between the formation of 4-OH-ropivacaine, 2-OH-ropivacaine, and PPX and CYP3A (r = 0.97-1). Incubation of ropivacaine and human liver microsomes in the presence of alpha-naphthoflavone or furafylline, inhibitors of CYP1A, decreased the formation of 3-OH-ropivacaine by about 85%, without affecting the formation of the other metabolites. The formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was markedly inhibited in the presence of troleandomycin, an inhibitor of CYP3A. Microsomes from cells expressing CYP1A2 formed 3-OH-ropivacaine, whereas 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX were formed in microsomes from cells expressing CYP3A4. Inhibitors of CYP2C (sulfaphenazole), CYP2D6 (quinidine), and 2E1 (diethyldithiocarbamate) did not inhibit the formation of any metabolite from ropivacaine. In conclusion, CYP1A catalyzes the formation of 3-OH-ropivacaine, the main metabolite formed in vivo, whereas the formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was catalyzed by CYP3A.  相似文献   

19.
20.
With the increased availability of human liver tissue, recombinant (cDNA-expressed) cytochrome P450 proteins (rCYPs), and knowledge of the human CYP pool (e.g. immunoquantitated levels of each CYP form in native liver microsomes), it is now possible to carry out in vitro "CYP reaction phenotyping" in an integrated manner. Reaction phenotyping allows one to identify which CYP form(s) is (are) involved in the metabolism of a given drug, using a combination of data obtained with native human liver microsomes and rCYP proteins. The following describes how one can attempt to integrate such data. A total of ten drugs are included in the analysis, represented by twelve reactions (six hydroxylations, two O-demethylations, one N-demethylation, one O-deethylation, and two sulfoxidations) that are largely catalyzed (> or =20%) by various combinations of CYPs (CYP3A4, CYP2C9, CYP1A2, and CYP2D6), and characterized by a wide range of apparent Km values (12-820 microM). Briefly, reaction rates measured with individual rCYPs are normalized with respect to the nominal specific content of the corresponding CYP in native human liver microsomes. In turn, the normalized rates for each rCYP are summed, yielding a "total normalized rate" (TNR), and the normalized rate for each rCYP is expressed as a percent of the TNR (% TNR). Finally, % TNR is related to inhibition (percent inhibition in the presence of CYP form selective chemical inhibitors; % I) and univariate regression analysis (r > or = 0.63; P < or = 0.05; N > or = 10 different livers) data obtained with native human liver microsomes. Therefore, the reaction phenotype of a drug is assigned by integrating all three data sets (r, % TNR, and % I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号