首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of using milk permeate (MP) to lower the protein level of skim milk powder (SMP) in producing powders of 34% and lower protein is explored. Skim milk suspensions with various levels of MP were prepared by mixing SMP and MP powder (MPP) at the ratios of 1:0, 7:3, 3:7, and 0:1: from 34 to 5.3% protein. The suspensions were dried in a spray dryer with inlet and outlet temperatures of 180 and 80°C, respectively. Increasing permeate concentration in the mixture showed a greater tendency to stickiness manifested by lowered the cyclone recovery of the powder as more powder stuck on the wall of the dryer. Increasing permeate concentration in the resultant powder did not significantly affect the bulk density but led to a reduction in the particle size and also made the powder slight green and yellowish in color. It also found to lower the glass transition temperature (Tg ) of the skim milk powder (SMP) and induce crystallization of lactose at lower water activity (aw  ≥ 0.328 for SMP:MPP of 3:7 and 0:1 compared to aw  ≥ 0.0.432 for SMP:MPP of 1:0 and 3:7). Addition of MP in SMP lowered the Tg values of the resulting powders. The permeate fraction in spray-dried SMP/MPP mixtures found to lower the critical aw and moisture content, suggesting the SMP mixed with MPP is more likely to become sticky than SMP alone (at 34% protein) when stored at a similar water activity and moisture content.  相似文献   

2.
The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h-1, 1.6 kg h-1, 1.8 kg h-1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s-1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

3.
A pilot-scale, co-current spray dryer has been used to investigate the effect of varying the swirl vane angle for the inlet air, inlet air temperature and liquid feed flowrate on the wall deposition flux of skim milk powder. The spray dryer was a cylinder-on-cone unit with a diameter of 0.8 m and a height of 2 m. It was fitted with adjustable swirl vanes surrounding a Delavan GA1 two-fluid atomizer. Swirl vane angles of 0, 25, and 30°, inlet air temperatures of 170, 200, and 230°C and feed flowrates of 1.4, 1.6 and 1.8 kg h-1 were used. Inlet air swirl was found to significantly influence the wall deposition flux, with the highest swirl vane angle of 30° giving rise to the largest wall deposition flux. The difference between the particle and sticky-point temperatures of the skim milk powder was also found to be important in influencing the wall deposition flux. The wall deposition flux was the highest, at 16 g m-2 h-1, when the outlet particle temperature was furthest above the sticky-point temperature, and this occurred at the lowest value of the inlet air temperature (170°C) and highest product moisture content. No significant effect on the wall deposition flux was evident when using a nonstick food grade material (nylon), adhesive tape or stainless steel as the surface materials for the wall deposition tests. Therefore, it is likely that cohesion occurs at a similar rate to adhesion in the wall deposition of milk powder. Grounding the spray dryer also did not have a significant effect on the wall deposition flux. Relating the wall deposition flux to the sticky-point curve in this way suggests that the same trends (increased wall deposition fluxes above the sticky-point curve) may apply for other materials as well.  相似文献   

4.
The rationale of this study has been to use fluidized beds to crystallize amorphous spray-dried skim milk powders with multiple stages of processing at different temperatures and humidities with the aim of rapidly making mostly crystalline powders. This paper discusses the performance of a multiple-stage fluidized bed dryer, and a combination of crystallization of lactose in spray drying at high humidity (lactose nuclei formation) and subsequent fluidized bed drying. Two different combinations of spray dryer and multi-stage fluidized-bed dryer have been suggested to crystallize lactose in skim milk powder. The results show significant improvements in the crystallinity of the powders. Moisture sorption test and X-ray diffraction analysis were used to assess the crystallinity of the powders. The processed powders that were crystallized in a humid-loop spray drying combined with a two-stage fluidized-bed dryer/crystallizer showed 92% improvement in lower amorphicity by processing at different stages of 70°C, 50% RH and 80°C, 50% RH for 15 minutes. The conventionally spray-dried powders that were crystallized in a three-stage fluidized-bed dryer/crystallizer showed 87% improvement in lower amorphicity (less moisture sorption) by processing at different stages of 60°C, 50% RH; 70°C, 40% RH; and 80°C, 40% RH for 20 minutes. The multiple-stage fluidized bed system showed distinctive potential to crystallize lactose significantly in skim milk powder using an industrial-feasible process.  相似文献   

5.
Reconstituted milk powders (skim milk, whole milk, and milk protein concentrate powders) were spray dried using research-scale (laboratory- and pilot-scale) spray dryers to investigate the influence of type on the dryer on the surface composition (protein, fat, lactose) and morphological characteristics (size and surface structure) of the powder particles. Milk powders produced by these research-scale dryers were compared to commercially produced and freeze-dried powders. The powders produced by the laboratory- and pilot-scale dryers were significantly different from the commercially dried powders in both surface composition and morphology. The milk powders produced by laboratory- and pilot-scale dryers provided reproducible results with similar surface morphologies between dryer types, despite varying surface compositions. The surface composition of the freeze-dried powder was also significantly different from than that of the spray-dried powders. The freeze-dried skim milk powder (SMP) was similar in surface protein to its bulk protein composition, indicating relative homogeneity of particle composition of the freeze-dried powder.  相似文献   

6.
The pattern of wall deposits in a pilot-scale spray dryer has been studied, using skim milk, by changing the flow rate to the nozzle and measuring the resultant deposition fluxes at different positions inside the dryer. The solids concentration was maintained at 30%. The deposition was measured at three locations of the conical section and in the cylindrical section of the spray dryer. Particle deposition can be either due to the inertia of the particles or turbulent diffusion, and it is not immediately obvious which of these mechanisms is dominant. Inertial deposition appeared to be present mainly at the bottom location of the conical section and was the largest amount in quantitative terms, being at least an order of magnitude larger compared with diffusion deposition, which seemed to be dominant on the side (cylindrical) walls of the spray dryer. In addition to the above observations, the deposition patterns in the conical section have been quantified. The relative deposition flux, in m-2, which is the ratio of the deposition flux, in g m-2 h-1, to the solids flow rate into the dryer, in g h-1, was between 0.04 and 0.09 m-2 at a solids concentration of 8.8% and between 0.15 and 0.4 m-2 at a solids concentration of 30%. The fused appearance of the microstructure in the wall deposits of skim milk powder, as seen in the Micro-CT study, suggests that re-entrainment of the wall deposits is unlikely.  相似文献   

7.
Seven samples of spray-dried milk were prepared using a miniature-scale Buchi Mini Spray Dryer B-290 (diameter 0.5 m, height 1.1 m). For each run, all inlet conditions were held constant except for feed type, inlet solids concentration, and inlet temperature. Skim milk at a solids concentration of 8.8% and whole milk at a solids concentration of 11% were dried at two inlet temperatures, 120 and 200°C. Lactose-free skim milk (8.8% solids concentration) and skim milk at a solids concentration of 41.2% were also dried at an inlet temperature of 200°C to assess the effects of milk feed type and inlet concentration, respectively. Equilibrium between the outlet product moisture content and the outlet gas conditions in the miniature spray dryer was not reached, unlike previous results for pilot-scale and larger dryers, so it appears that, in small (miniature-scale) dryers, the outlet moisture content is limited by kinetics and not by equilibrium. Calculated yields ranged from 10.4 to 82.7%, with whole milk giving significantly lower yields than skim milk, due to the sticky nature of fat found in whole milk. Lactose-free skim milk produced lower yields than skim milk dried at the same conditions, indicating that the lower glass-transition temperatures of the converted lactose sugars make these powders stickier. This sugar effect was not as large as that of the fat content. Comparisons between the SEM images, fractal dimensions, particle size distributions, and bulk densities showed that lower inlet temperatures produced particles of a more collapsed nature with a higher bulk density and lower fractal dimension than milk particles dried at higher temperatures. Also, feed solids concentration heavily influenced the shape of the particles, with high concentrations producing more spherical, less broken or shriveled particles with higher fractal dimensions, as the shell walls are thicker under these conditions. The fractal dimensions appeared to give generally consistent results for quantifying the average particle shapes.  相似文献   

8.
Smoldering milk powder lumps deposited on dryer walls or falling through the hot air could potentially start a fire or even an explosion in milk powder dryers. Explosive behavior is more frequently experienced in the modern industry, where high production throughputs are desired. It has been known that powder at such a state emits carbon monoxide (CO). The work reported in this article is the study of the characteristics of CO generation during the incomplete combustion of milk powders. The powders used in the study were whole milk and skim milk. Samples placed in a reactor were heated using air at 300°C. The exhaust air of the reactor was continuously measured for CO concentration using a highly sensitive CO analyzer. Temperatures were monitored, and the smoke produced during the combustion of whole milk powder was collected and analyzed using gas-chromatography mass-spectroscopy (GC-MS). Whole milk powder was found to produce significantly higher amounts of CO than skim milk powder. Hydrocarbons, alcohols, and carboxylic acids were tentatively identified during the GC-MS analyses. Results from the study are definitely useful in optimizing the use of an early fire detection system in milk powder plants.  相似文献   

9.
The insolubility of milk powder is affected by the degree of heating in the drying process. This phenomenon was studied with milk products of different moisture content that were subjected to treatments of defined temperature (5−55°C) and time. Skim milk powder (SMP, protein content 36%) was most sensitive over a range of moistures from 15% to 40%. Milk protein concentrate (MPC) powder (73% protein) was most sensitive at higher moisture contents than SMP. At the fastest reaction rates, and for both SMP and MPC, the ratio of moisture to protein (calculated on a dry basis) was approximately one part moisture to one part protein. The rates of development of insolubility in the moist products were fitted to the Arrhenius relationship; this allows extrapolation of the rate of reaction to conditions in a spray dryer. The factors that affect the insolubility reaction are discussed, in particular the effects of the concentrations of lactose and minerals. The results explain certain features of the current design of milk powder driers and will facilitate overcoming problems with the insolubility in high protein powders.  相似文献   

10.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of tPEF = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40-60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity Deff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of Deff. For instance, 4 h of centrifugal OD permitted increasing the value of Deff from 0.93 · 10-9 to 3.85 · 10-9 m2/s for untreated carrots and from 1.17 · 10-9 to 5.10 · 10-9 m2/s for PEF-treated carrots.  相似文献   

11.
Smoldering milk powder lumps deposited on dryer walls or falling through the hot air could potentially start a fire or even an explosion in milk powder dryers. Explosive behavior is more frequently experienced in the modern industry, where high production throughputs are desired. It has been known that powder at such a state emits carbon monoxide (CO). The work reported in this article is the study of the characteristics of CO generation during the incomplete combustion of milk powders. The powders used in the study were whole milk and skim milk. Samples placed in a reactor were heated using air at 300°C. The exhaust air of the reactor was continuously measured for CO concentration using a highly sensitive CO analyzer. Temperatures were monitored, and the smoke produced during the combustion of whole milk powder was collected and analyzed using gas-chromatography mass-spectroscopy (GC-MS). Whole milk powder was found to produce significantly higher amounts of CO than skim milk powder. Hydrocarbons, alcohols, and carboxylic acids were tentatively identified during the GC-MS analyses. Results from the study are definitely useful in optimizing the use of an early fire detection system in milk powder plants.  相似文献   

12.
Research trials were carried out over a two year period in an industrial skim milk powder production plant to examine the benefits of using an in-line viscometer rather than in-line density meter to control the degree of skim milk concentration in an evaporator prior to spray drying.

It was concluded that use of an in-line viscometer significantly reduces spray drier losses, overall steam consumption, pipeline blockages and evaporator fouling in the manufacture of skim milk powder.  相似文献   

13.
《Drying Technology》2007,25(10):1621-1632
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s-1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm-2 at an air velocity of 0.5 m/s-1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20-4.52 × 10-11 m2 s-1 and 3.04-4.79 × 10-11 m2/s-1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

14.
ABSTRACT

Research trials were carried out over a two year period in an industrial skim milk powder production plant to examine the benefits of using an in-line viscometer rather than in-line density meter to control the degree of skim milk concentration in an evaporator prior to spray drying.

It was concluded that use of an in-line viscometer significantly reduces spray drier losses, overall steam consumption, pipeline blockages and evaporator fouling in the manufacture of skim milk powder.  相似文献   

15.
Heterodyne micro-interferometry was utilized to measure out-of-plane transient displacements in the interphase due to thermal cycling. In-situ measurements were made on single carbon fiber/epoxy samples with interphases of varying glass transition temperature. Interphase properties were tailored such that one set of samples had fibers which were coated with a low Tg resin, another set had a higher Tg coating, and in the third set the fibers were uncoated. The interferometric data demonstrated that interphase Tg has a significant effect on the rate and magnitude of the thermal deformations at the fiber/matrix interface. The presence of a low Tg interphase caused an increase in the magnitude of the thermal displacements due to a local softening of the matrix and increase in coefficient of thermal expansion. In addition, the rate at which the displacements increase was also higher due to the reduction in Tg. Samples with untreated fibers (no tailored interphase) behaved as if a low Tg interphase had formed. Experimental displacement profiles were also compared with finite element predictions to assess the behavior of the tailored interphases.  相似文献   

16.
Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

17.
The viscoelastic behavior, thermodynamic compatibility, and phase equilibria in block copolymer-based pressure-sensitive adhesives were investigated. The block copolymers investigated were: (1) polystyrene-block-polybutadiene-block-polystyrene (SBS) copolymer (KRATON® D-1102, Shell Development Company) and (2) polystyrene-block-polyisoprene-block-polystyrene (SIS) copolymer (KRATON® D-1107, Shell Development Company). The tackifying resins investigated were: (1) WINGTACK® 86 (Goodyear Tire & Rubber Company) and (2) PICCOTAC® 95BHT (Hercules Inc.). Samples of various compositions were prepared by a solution-casting method with toluene as solvent. Measurements of dynamic storage modulus (G'), dynamic loss modulus (G'), and loss tangent (tan δ) were taken, using a Rheometrics Mechanical Spectrometer. It was found that: (1) both WINGTACK 86 and PICCOTAC 95BHT were equally effective in decreasing the plateau modulus (GON), and increasing the glass transition temperature (Tg) of the polyisoprene midblock of KRATON 1107; and (2) WINGTACK 86 was very effective in decreasing the GON and increasing the Tg of the polybutadiene midblock of KRATON 1102, whereas PICCOTAC 95BHT was not. The observed difference between WINGTACK 86 and PICCOTAC 95BHT in decreasing the GON and increasing the Tg of the polybutadiene midblock of KRATON 1102, whereas PICCOTAC 95BHT was not. The observed difference between WINGTACK 86 and PICCOTAC 95BHT in decreasing the GON and increasing the Tg of the polybutadiene midblock of KRATON 1102 (perhaps to SBS block copolymers in general) is explained by the values of the interaction parameter for WINGTACK 86 and KRATON 1102, and for PICCOTAC 95BHT and KRATON 1102. The interaction parameter was determined, using the piezoelectric quartz sorption method. Phase diagrams were constructed for the four block copolymer/tackifying resin systems investigated, using information obtained from both dynamic viscoelastic measurements and optical microscopy. It was found that when mixed with KRATON 1102, PICCOTAC 95BHT formed separate domains whereas WINGTACK 86 did not over the range of concentrations and temperatures investigated. This confirms the evidence obtained from two other independent experimental techniques, namely, dynamic viscoelastic measurements and the piezo-electric sorption method. We have concluded from the present study that PICCOTAC 95BHT is not as an effective tackifying resin as WINGTACK 86, when each is mixed with KRATON 1102. It is pointed out further that information on the order-disorder transition temperature Tr, which was determined from a rheological technique proposed by us, is valuable in determining optimal processing conditions for block copolymer-based pressure-sensitive adhesives.  相似文献   

18.
Fissure formation during rice drying is a major cause of rice milling quality reduction. This work has applied principles of polymer science in studying thermal and hygroscopic properties of rice kernels, particularly the glass transition temperature (Tg). This data was used to develop a hypothesis that explains the occurrence of rice kernel fissuring as a result of drying. The drying process was mapped onto a state diagram to illustrate the changes in state that a kernel could incur through drying and tempering operations. An experiment was designed to validate the hypothesis in which the effect of the Tg on rice drying and tempering in terms of milling quality was determined. Results showed that drying air temperatures up to 60°C and high moisture removal rates could be used without reducing the milling quality, as long as sufficient tempering was allowed at a temperature above the Tg of the rice.  相似文献   

19.
The apparent density of bamboo (Bambusa phyllostachys) shoot was investigated at a moisture content range of 10-92% wet basis by weighing the product in air and determining the buoyancy force in toluene. An analysis of variance (ANOVA) unveiled that moisture content significantly affected apparent density at 95% confidence level. The true density of the bamboo shoot was determined by grinding the dried sample to exclude all internal pores and using density bottles. The experimental data fitted well to a general density equation for fruits and vegetables proposed by Lozano et al. (1983) and to a second order polynomial (SOP) model. The internal porosity generated during drying varied in a nonlinear (quadratic) fashion. Shrinkage at different moisture content levels was measured by evaluating the dimensional changes in bamboo shoot slabs (5.0 × 3.2 × 1.8 cm) by drying in a convection oven and a tray dryer operating at 70°C and 7.2% relative humidity. Shrinkage was affected statistically by decreasing moisture content at 95% confidence level. Shrinkage was compared with available models in literature and found to be oriented based on fiber direction and distinctly different from the isotropic volume change in fruits and vegetables.  相似文献   

20.
脲醛树脂乳液干燥成粉末的试验研究   总被引:2,自引:0,他引:2  
进行了用惰性粒子流化床干燥器将脲醛树脂乳液干燥成粉末的试验研究,产出了品质好的干粉,得出了在试验条件下的干燥强度和热效率,并作了经济性评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号