首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以LiOH.H2O、Ni(OH)2和Mn3O4为原料,采用固相法合成锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的倍率性能和高低温性能。结果表明:900℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Ni0.2Mn0.6]O2材料,并具有良好的电化学性能,放电容量最高可达235.9 mA.h/g;在50℃下测试时该材料的放电容量高达284.4 mA.h/g,并表现出良好的循环性能,其倍率性能和低温性能还有待进一步改善。  相似文献   

2.
LiNi0.6Co0.2Mn0.2O2 was prepared from LiOH·H2O and MCO3 (M=Ni, Co, Mn) by co-precipitation and subsequent heating. XRD, SEM and electrochemical measurements were used to examine the structure, morphology and electrochemical characteristics, respectively. LiNi0.6Co0.2Mn0.2O2 samples show excellent electrochemical performances. The optimum sintering temperature and sintering time are 850 °C and 20 h, respectively. The LiNi0.6Co0.2Mn0.2O2 shows the discharge capacity of 148 mA·h/g in the range of 3.0?4.3 V at the first cycle, and the discharge capacity remains 136 mA·h/g after 30 cycles. The carbonate co-precipitation method is suitable for the preparation of LiNi0.6Co0.2Mn0.2O2 cathode materials with good electrochemical performance for lithium ion batteries.  相似文献   

3.
采用低温共沉淀-水热-煅烧法合成了锂离子电池Fe-Ni-Mn体系正极材料Li1+x(Fey/2Niy/2Mn1-y)1-xO2,并用XRD、SEM、ICP光谱和电化学性能测试对材料进行了表征.XRD测试和ICP分析表明,Fe、Ni取代Li2MnO3中的部分Mn,形成很好的固溶结构yLiFe1/2Ni1/2O2-(1-y)Li2MnO3 (y=0.l,0.2,0.3,0.4,0.5).SEM测试表明,取代量y不同,材料的表观形貌有所不同,y=0.4时材料的颗粒粒径均匀、较小,呈类球形结构.电化学性能测试表明,当y=0.4时,循环稳定性最好,充放电50次后放电比容量仍可维持在195.0 mAh/g,放电中值电压为3.5 V,y=0.4时样品在大倍率放电下的电化学性能表现良好.  相似文献   

4.
1. Introduction From the point of view of environmental conser-vation, there has been a growing interest in the re-search and development of lithium-ion batteries as a new-generation battery [1-2]. Its anode material was made mainly from LiCoO2 [3-4], LiNiO2 [5], and LiMn2O4 [6-8]. Yoshio et al. [9] prepared LiCoO2 using the com-plex compound of organic acid of Co. However, its capacity was restricted to 125 mA?h/g. Moreover, its price was high and it was toxic. The extent of appli-cati…  相似文献   

5.
通过固相合法制备了新型锂离子电池负极材料Li1.1V0.9O2,考察不同合成工艺对其结构、形貌及电化学性能的影响。采用X射线衍射、扫描电子显微镜和恒电流充放电法研究了试样的结构、形貌和电化学性能。实验结果表明:采用两段烧结法合成的试样结构更完整、粒径分布更均匀、电化学性能更优良。在1 C倍率下,充电容量高达275 mAh/g,经过50次循环后,充电容量保持率高达96.73%。  相似文献   

6.
LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), charge-discharge cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM. At 0.5C and 2C rates, 1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading, while those of the bare one were 16.5% and 45.9%, respectively. At 5C rate, the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity, while that of the bare one decreased to 52.6%. EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously. CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer.  相似文献   

7.
为提高Li4Ti5O12材料的振实密度,以十六烷基三甲基溴化铵(CTAB)为结构导向剂,通过溶胶-凝胶法合成了球形Li4Ti5O12材料。利用TGA/DSC、XRD、SEM、CV和恒流充放电仪对材料的结构、形貌和电化学性能进行测试。结果表明,在800℃热处理12 h所得样品为单一的尖晶石晶体结构,结晶度较高,颗粒基本呈规则球形、流动性较好,粒径分布均匀,并表现出较好的电化学性能,振实密度达1.86 g/m L。在室温下以0.1 C充放电时,其首次放电比容量为173.19 m Ah/g,50次充放电循环后其放电比容量保持率为97.4%。  相似文献   

8.
针对铁镍电池充电效率低和自放电大的问题,采用Li2O-2B2O3(LBO)这种氧化物,研究表面修饰不同量LBO(0?1%,质量分数)的Fe3O4电极的组织结构及电化学性能。结果表明:适当的添加量(如0.1%LBO)可实现Fe3O4表面的均匀修饰,且LBO和Fe3O4之间不存在化学反应;修饰0.1%LBO的Fe3O4电极相比纯Fe3O4电极放电容量增大了54.1 mAh/g,达到315.2 mAh/g,其充电效率、循环性能及自放电性能均得到改善;0.1%LBO的Fe3O4电极性能的改善与其电荷转移阻抗减小、析氢过电位及耐腐蚀性能的提高直接相关。  相似文献   

9.
通过草酸共沉淀法成功合成了5 V正极材料LiNi0.5Mn1.5O4,采用XRD、SEM、充放电试验和循环伏安法对合成产物进行表征。XRD和SEM分析结果表明,所合成的正极材料LiNi0.5Mn1.5O4具有立方尖晶石结构(空间群为Fdˉ3 m),结晶度高,粒度适中且比较均匀。电化学测试结果表明,合成产物具有优良的电化学性能,它仅在4.7 V附近有一个放电平台,0.1 C的放电容量高达133 mAh/g,50次循环后放电容量仍保持在128 mAh/g以上,1和3 C的放电容量在30次循环后也分别保持在122和101 mAh/g以上  相似文献   

10.
研究了Ti0.9Zr0.2Mn(1.8-x)MxV0.2(M=Ni,Cr;x=0,0.2)合金的晶体结构与贮氢性能。结果表明,Ti0.9Zr0.2Mn1.6Ni0.2V0.2和Ti0.9Zr0.2Mn1.6Cr0.2V0.2的贮氢量达到240mL/g。合金的主相均为C14 Laves相,镍,铬的取代使点阵常数和晶胞体积增大,P-C-T曲线的滞后降低,压力平台的倾斜度增加。  相似文献   

11.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

12.
1 INTRODUCTIONSincethefirstcommercializationbySonyCorpo rationintheearly 1990s ,thelithium ionbattery(LIB)hasbecomeamajorproducttodominatethemarketforsmallrechargeablebatteries .Further more ,Li ionbatteriesareexpectedtobeusedasalarge scaleenergystoragedeviceforelectricvehices(EV ) [1] .ThoughvarioustypesofcathodematerialssuchasLiCoO2 ,LiNiO2 ,LiMn2 O4 ,andsubstitutedtran sitionmetaloxidesarecurrentlyusedincommercial izedLi ionbatteries[2 ,3] ,LiCoO2 inthesecathodematerialsismost…  相似文献   

13.
以SnCl4.5H2O、TiCl4、ZnCl2和N2H4.H2O为原料,采用水热法制备Zn2Sn0.8Ti0.2O4纳米粉体。在此基础上,以葡萄糖和水热合成的Zn2Sn0.8Ti0.2O4为原料,以碳热还原法制备Zn2Sn0.8Ti0.2O4/C复合材料。利用XRD、XPS、TEM、恒电流充放电等方法分别研究Zn2SnO4和Zn2Sn0.8Ti0.2O4/C复合材料的结构、形貌和电化学性能。同时用非原位XRD、XPS和SEM分析Zn2Sn0.8Ti0.2O4/C复合材料电极在充放电过程中的结构和形貌变化。合成的纯Zn2SnO4的首次放电容量为1670.8mA.h/g,循环40次后放电容量迅速衰减为342.7mA.h/g。而Zn2Sn0.8Ti0.2O4/C复合材料的首次放电容量为1530.0mA.h/g,循环100次后容量还保持为479.1mA.h/g,与纯Zn2SnO4、Zn2Sn0.8Ti0.2O4和Zn2SnO4/C相比,电化学性能有较大的提高。  相似文献   

14.
为改善LiNi0.5Mn1.5O4的电化学性能,采用流变相法合成掺镁的锂离子电池正极材料LiMgxNi0.5-xMn1.5O4(x=0,0.05,0.1)。XRD测试结果表明所得材料仍为尖晶石结构。电化学性能测试结果显示:当x取值0.1,在3.5~4.9V电压范围内进行充放电循环时,材料LiMg0.1Ni0.4Mn1.5O4具有较好的循环性能,1C充放电时,初始放电比容量可达110.22mAh/g,30次循环后容量衰减率仅为7.7%。  相似文献   

15.
The crystal structure, the phase composition and the electrochemical characteristics of Zr0.9Ti0.1(Ni1.1Mn0.7V0.2)x (x=0.90, 0.95, 1.00, 1.05) alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that all alloys are multiphase with C15 Laves phase as a main phase along with C14 phase and some secondary phases. And the amounts of the C14 phase and secondary phases in the four alloys increases with decreasing x. The results indicated that the various stoichiometric ratios have great effects on the electrochemical characteristics such as the maximum discharge capacity, discharge rate capability and self-discharge properties etc. for Zr0.9Ti0.1(Ni1.1Mn0.7 V0.2)X (x=0.90, 0.95, 1.00, 1.05) alloys. The hyper-stoichiometric Zr0.9 Ti0.1(N1.1Mn0.7 V0.20)1.05 exhibits the maximum discharge capacity of 332mAh-g-1. The C14 phase and secondary phases seems to improve discharge rate capability of the alloys.  相似文献   

16.
Layered cathode material LiCo1/3Ni1/3Mn1/3O2 was synthesized by Pechini process, and investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic charge/discharge cycling. The sample is well-crystallized and has a phase-pure a-NaFeO2 structure. The particle sizes are uniform, and distributed in the range of 20-200 nm. The initial discharge capacity of the Li/LiCo1/3Ni1/3Mn1/3O2 cell was about 149 mAh·g -1 when it was cycled at a voltage range of 4.5-2.3 V with a specific current of 0.25 mA. The result is better in comparison with solid-state solution method. The synthetic procedure was discussed. Three major reactions: chelation, esterification, and polymerization successively occurred.  相似文献   

17.
采用溶胶-凝胶法合成了层状LiNi0.4Co0.2Mn0.4O1.97X0.03(X=O,F,Cl)正极材料。以XRD、SEM、CV、EIS和充放电测试等手段对材料的晶体结构、表观形貌和电化学性能进行表征。XRD结果显示F-和Cl-掺杂没有改变晶体的六方单层状结构;CV结果表明掺杂提高了材料的可逆性;充放电测试表明,F-和Cl-掺杂均提高了材料的放电容量,并改善了材料的循环性能;EIS测试结果发现,F-和Cl-掺杂均有效地抑制其在循环过程中电化学反应阻抗的增加。  相似文献   

18.
Li4Ti5O12 samples were synthesized via a PVP (polyvinylpyrrolidone) assisted gel-combustion method by varying the calcination temperature. The effect of different roasting temperatures on the structure, the morphology, and the electrochemical performance of the Li4Ti5O12 material was analyzed. The cycle performance, the structure and the morphology of the prepared material were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge test system. The results show that the Li4Ti5O12 powder has a single-phase spinel structure with uniform particles size. The average particle size is 500 nm. The Li4Ti5O12 material synthesized at 800 oC for 8 h possesses excellent performance, and its first discharge capacity is 167.4 mAh/g  相似文献   

19.
以Al(NO3)3?9H2O为包覆原料,通过燃烧法制备得到LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和透射电镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明,Al2O3包覆没有改变LiNi0.03Co0.05Mn1.92O4的尖晶石型结构,包覆层厚度约10.6nm。LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料电化学性能得到了明显改善,1 C和10 C倍率下初始放电比容量分别为119.9 mAh?g-1和106.3 mAh?g-1,充放电循环500次后容量保持率分别为88.4%和78.2%,而未包覆的LiNi0.03Co0.05Mn1.92O4在1 C和10 C倍率下初始放电比容量分别为121.2 mAh?g-1和104.0 mAh?g-1,500次循环后容量保持率分别为84.1%和67.6%。LiNi0.03Co0.05Mn1.92O4@Al2O3活化能为32.92 kJ?mol-1,而未包覆材料的活化能为36.24 kJ?mol-1,包覆有效降低了材料Li+扩散所需克服的能垒,提高了材料的电化学性能。  相似文献   

20.
将Co3O4、Li2CO3、Mg(OH)2 和Y2O3 按一定化学计量比称取并混合均匀后,采用高温固相法合成LiCo1-x-yMgxYyO2正极材料并探究了Mg-Y 共掺杂对钴酸锂高电压性能的影响.采用X 射线衍射(XRD)和扫描电镜(SEM)分别表征其晶体结构和形貌.LiCo1-x-yMgxYyO2正极材料高电压性能...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号