首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Lactating dairy cows (n = 1,538) were enrolled in a randomized complete block design study to evaluate protocols to synchronize estrus and ovulation. Within each herd (n = 8), cows were divided into 3 calving groups: early, mid, and late, based on days in milk (DIM) at mating start date (MSD). Early calving cows (n = 1,244) were ≥42 DIM at MSD, mid-calving cows (n = 179) were 21 to 41 DIM at MSD, and late-calving cows (n = 115) were 0 to 20 DIM at MSD. Cows in the early, mid-, and late-calving groups were synchronized to facilitate estrus or timed AI (TAI) at MSD (planned breeding 1; PB1), 21 d (PB2), and 42 d (PB3) after MSD, respectively. For each PB, cows in the relevant calving group were stratified by parity and calving date and randomly assigned to 1 of 4 experimental groups: (1) d −10 GnRH (10 μg of i.m. buserelin) and controlled internal drug release insert (CIDR; 1.38 g of progesterone); d −3 PGF (25 mg of i.m. dinoprost); and d −2 CIDR out and AI at observed estrus (CIDR_OBS); (2) same as CIDR_OBS, but GnRH 36 h after CIDR out and TAI 18 h later (CIDR_TAI); (3) same as CIDR_TAI, but no CIDR (Ovsynch); or (4) untreated controls (CTRL). The CIDR_OBS, CIDR_TAI, and Ovsynch had shorter mean intervals from calving to first service compared with the CTRL (69.2, 63.4, and 63.7 vs. 73.7 d, respectively). Both CIDR_OBS (predicted probability; PP of pregnancy = 0.59) and CIDR_TAI (PP of pregnancy = 0.54) had increased odds of conceiving at first service compared with Ovsynch [PP of pregnancy = 0.45; odds ratio (OR) = 1.81 and OR = 1.46, respectively], and Ovsynch had decreased likelihood of conceiving at first service (OR = 0.70) compared with CTRL (PP of pregnancy = 0.53). Both CIDR_TAI hazard ratio; HR [95% confidence interval = 1.21 (1.04, 1.41)] and Ovsynch [HR (95% confidence interval) = 1.23 (1.05, 1.44)] were associated with an increased likelihood of earlier conception compared with the CTRL. A greater proportion of cows on the CIDR_TAI treatment successfully established pregnancy in the first 42 d of the breeding season compared with the CTRL (0.75 vs. 0.67 PP of 42-d pregnancy, respectively). Protocols to synchronize estrus and ovulation were effective at achieving earlier first service and conception in pasture-based seasonal calving dairy herds. However, animals that conceived following insemination at observed estrus had a decreased likelihood of embryo loss to first service compared with animals bred with TAI (PP of embryo loss after first service = 0.05 vs. 0.09; OR = 0.52).  相似文献   

2.
The effect of lameness on the fertility of dairy cattle is well recognized. But, the effect of lameness on the fertility of seasonally breeding cattle in pasture-based systems is less well characterized. This prospective cohort study of 463 cows on 1 farm in the lower North Island of New Zealand was designed to assess the effect of clinical lameness, as identified by farm staff, on the hazard of conception after the planned start-of-mating date. A Cox proportional hazards model with time-varying covariates was used. After controlling for the effect of parity, breed, body weight at calving, and calving-to-planned start of mating interval, the daily hazard of conception for cows identified as lame was 0.78 (95% confidence interval: 0.68-0.86) compared with non-lame cows. Lame cows took 12 d longer to get pregnant compared with their non-lame counterparts.  相似文献   

3.
To evaluate the efficacy of two hormonal protocols for synchronization of ovulation and timed artificial insemination (TAI) in dairy cows managed in grazing-based dairies, lactating dairy cows (n = 142) from two grazing-based dairies were randomly assigned to one of three treatment groups. Cows in the first group (Ovsynch) received 50 microg of GnRH (d -10); 25 mg of PGF2alpha (d -3), and 50 microg of GnRH (d -1) followed by timed AI on d 0. Cows in the second group (PGF + Ovsynch) received a modified Ovsynch and timed AI similar to Ovsynch but with the addition of 25 mg of PGF2alpha 12 d (d -22) before initiation of Ovsynch. Cows in the third group (control) received standard reproductive management in place on each farm. Luteolysis occurred in 90.5% of cows exhibiting luteal function on d -22 in the PGF + Ovsynch treatment group, whereas none of the cows in the Ovsynch group underwent luteolysis on d -22. Synchronization rate (i.e., ovulatory response at 48 h after the second GnRH injection), conception rates at TAI and pregnancy rates after 35 d of breeding were similar for cows in the Ovsynch and PGF + Ovsynch groups. The proportion of anovular cows at the first GnRH injection of the synchronization protocols (d -10) was similar for cows receiving Ovsynch (28.0%) and PGF + Ovsynch (30.7%), and conception rate at TAI was similar for cycling (45.8%) and anovular (30.0%) cows. The cumulative pregnancy rate was greater for cows receiving TAI compared with control cows after 7 d of breeding (41.2 vs. 20.0%) but did not differ at 35 d of breeding (54.9 vs. 60.0%). Administration of PGF2alpha 12 d before initiation of Ovsynch did not improve synchronization, conception, or pregnancy rate compared with the standard Ovsynch protocol. Synchronization of ovulation to initiate timed AI at the onset of the breeding season resulted in earlier establishment of pregnancy compared with standard reproductive management.  相似文献   

4.
《Journal of dairy science》2019,102(12):11523-11535
In theory, a late winter–early spring calving date in temperate grazing systems best matches pasture supply and herd demand, thereby minimizing the need for nonpasture feeds and maximizing profitability. We used a quantitative case study approach to define the effects of season of calving on biophysical and financial performance in a grazing system without the confounding effects of imported feeds (i.e., milk production directly from grazed pasture). A 2-yr production system experiment was established to quantify the effects of changing onset of seasonal calving (i.e., planned start of calving; PSC) from winter (July in the Southern Hemisphere) to spring (October), summer, (January), or autumn (April) on pasture and animal production and profitability. Eighty Holstein-Friesian cows were randomly allocated to 1 of 4 PSC treatments, each of which had a different PSC [mean calving date of January 10 (JAN), April 10 (APR), July 10 (JUL), or October 10 (OCT)]. Data were analyzed for consistency of treatment response over years using ANOVA procedures with year, PSC treatment, and year × PSC treatment interactions as fixed effects. Collated biological data and financial data extracted from a national economic database were used as fixed variables to model the financial performance for the different treatments. A stochastic risk analysis was undertaken, where historical pasture growth and milk price data were used to estimate the probability distributions for stochastic input variables. Gross farm revenue and operating profit per hectare were modeled under 2 scenarios: (A) milk price did not include a premium for milk supplied during the winter, and (B) milk price included a realistic premium for milk supplied in winter. Annual and seasonal pasture growth did not differ between treatments, but the pasture growth (kg of dry matter/ha) and profile of the JUL treatment best matched the lactation nutrient demand profile. In comparison, profiles for JAN, APR, and OCT calving treatments had periods of greater surplus and deficit due to the time of calving and herd demand relative to the pasture growth profile. As a result, the JAN and OCT treatments conserved more pasture as silage and cows consumed a larger proportion of their annual diet as silage. Although the amount of silage conserved and consumed did not differ between the JUL and APR calving treatments, the timing of the silage consumption was different, with silage making up a greater proportion of the diets in the APR treatment 1 to 90 and 91 to 180 d postcalving and being offered to the JUL calving treatment only 271 to 365 d postcalving. As a result of differences in the quantity and proportion of pasture and pasture silage in the lactating diet, the JUL treatment herd tended to produce greater milk, 4% fat-corrected milk, fat, protein, and lactose yields (kg/cow) than the other PSC treatments, which did not differ from each other. Operating expenses per hectare did not differ materially between calving date scenarios, but operating expenses per kilogram of fat-corrected milk and kilogram of fat and protein were 15 to 20% less in the JUL treatment. With or without a realistic winter milk premium, gross farm revenue and operating profit per hectare were greater in the JUL treatment than in the APR treatment, which had greater revenue and profitability than the remaining 2 calving date treatments. In summary, our results indicate that a PSC in late winter is most profitable in a grazing system not importing feed, with or without a realistic price incentive scheme.  相似文献   

5.
Two experiments examined pregnancy after synchronized ovulation (Ovsynch) with or without progesterone (P4) administered via controlled internal drug release (CIDR) intravaginal inserts. In experiment 1, 262 lactating cows in one herd were in 3 treatments: Ovsynch (n = 91), Ovsynch + CIDR (n = 91), and control (n = 80). The Ovsynch protocol included injections of GnRH 7 d before and 48 h after an injection of PGF20. Timed artificial insemination (TAI; 57 to 77 d postpartum) was 16 to 20 h after the second GnRH injection. Cows in the Ovsynch + CIDR group also received a CIDR (1.9 g of P4) insert for 7 d starting at first GnRH injection. Control cows received A-I when estrus was detected using an electronic estrus detection system. Based on serum P4, 44.1% of cows were cyclic before Ovsynch. Pregnancy rates at 29 d (59.3 vs. 36.3%) and 57 d (45.1 vs. 19.8%) after TAI and embryo survival (75.9 vs. 54.5%) from 29 to 57 d were greater for Ovsynch + CIDR than for Ovsynch alone. In experiment 2, 630 cows in 2 herds received TAI at 59 to 79 d postpartum after 6 treatments. Estrous cycles were either presynchronized (2 injections of PGF2alpha 14 d apart; n = 318) or not presynchronized (n = 312). Within those groups, Ovsynch was initiated 12 d after second presynchronization PGF2alpha, and used alone (n = 318) or with CIDR inserts for 7 d (1.38 g of P4/insert, n = 124 or 1.9 g of P4/insert, n = 188). Before Ovsynch, 80% of cows were cyclic. Presynchronization increased pregnancy (46.8 vs. 37.5%) at 29 d after TAI, but CIDR inserts had no effect on pregnancy in experiment 2. Overall embryonic survival between 29 and 57 d in experiment 2 was 57.7%. Use of CIDR inserts with Ovsynch improved conception and embryo survival in experiment 1 but not in experiment 2, in part due to differing proportions of cyclic cows at the outset. Presynchronization before Ovsynch enhanced pregnancy rate.  相似文献   

6.
Ovulatory response to the first GnRH of Ovsynch is the critical determinant for successful synchronization of ovulation in dairy cows. Our objective in this study was to develop a pre-Ovsynch treatment that increased the percentage of cows that ovulated in response to the first GnRH injection of Ovsynch. To accomplish our goal, we evaluated a hormonal strategy that consisted of PGF2α and GnRH before the first GnRH of Ovsynch. Lactating dairy cows (n = 137) were assigned to receive either no treatment before Ovsynch (control) or 25 mg of PGF2α (PreP) followed 2 d later by 100 μg of GnRH (PreG), administered 4 (G4G), 5 (G5G), or 6 (G6G) d before initiating the Ovsynch protocol. Transrectal ultrasonography was performed to assess follicular size and resulting ovulation, and blood samples were collected to measure circulating concentrations of progesterone and estradiol immediately before each hormonal injection. Cows were inseminated at a fixed time 16 h after final GnRH of Ovsynch. Pregnancy diagnosis was performed 35 d later by palpation per rectum of uterine contents. Proportion of cows that ovulated to first GnRH of Ovsynch was 56.0, 66.7, 84.6, and 53.8% for G4G, G5G, G6G, and controls, respectively, and was greater for G6G than for control cows. Luteolytic response to PGF2α of Ovsynch was greater in all treated than control cows (92.0, 91.7, 96.2, and 69.2% for G4G, G5G, G6G, and control, respectively). Synchronization rate to Ovsynch was greater (92 vs. 69%, respectively) in G6G than in control cows. In addition, cows that ovulated in response to first GnRH of Ovsynch had greater response to PGF2α of Ovsynch (92.7 vs. 77.1%, respectively) and greater synchronization rate to the overall protocol (87.9 vs. 62.9%, respectively) than those that did not ovulate. Concentrations of progesterone at PGF2α of Ovsynch, and estradiol and follicle size at final GnRH of Ovsynch, were identified as significant predictors of probability of pregnancy 35 d after artificial insemination. In summary, a PGF2α-and-GnRH based pre-Ovsynch strategy consisting of a 6-d interval between PreG and first GnRH of Ovsynch resulted in a greater ovulatory and luteolytic response to first GnRH and PGF2α of Ovsynch, respectively, compared with control cows. This, in turn, optimized synchronization rate to Ovsynch.  相似文献   

7.
To compare 2 strategies for systematically resynchronizing ovulation, lactating Holstein cows (n = 763) at various days in milk and prior artificial insemination services were assigned randomly at timed AI (TAI) to receive the first GnRH injection of Ovsynch 26 (D26) or 33 (D33) d after TAI to resynchronize ovulation (Resynch) in cows failing to conceive. Cows in the D26 treatment received GnRH 26 d after TAI and continued Resynch only when diagnosed not pregnant by using ultrasonography 33 d after TAI, whereas D33 cows initiated Resynch only when diagnosed not pregnant 33 d after TAI. Cows were classified based on the presence or absence of a corpus luteum (CL) at the not-pregnant diagnosis, and cows without a CL received an intravaginal progesterone-releasing insert during Resynch. When analyzed as a systematic strategy, pregnancy rate per AI (PR/AI) was greater for cows assigned to the D33 than the D26 Resynch treatment (39.4 vs. 28.6%). A treatment × parity interaction was detected for PR/AI after Resynch for nonpregnant cows having a CL in which primiparous cows had a greater PR/AI than multiparous cows when Resynch was initiated 33 d after the initial TAI, and primiparous and multiparous cows when Resynch was initiated 26 d after the initial TAI. Pregnancy loss for Resynch was 6.4% between 33 and 40 d, and 2.6% between 40 and 61 d after Resynch TAI. We concluded that delaying initiation of Resynch until 33 d after TAI increased PR/AI for primiparous cows.  相似文献   

8.
《Journal of dairy science》2022,105(9):7588-7599
This study aimed to investigate dairy cattle breeding goals with more emphasis on resilience. We simulated the consequences of increasing weight on resilience indicators and an assumed true resilience trait (TR). Two environments with different breeding goals were simulated to represent the variability of production systems across Europe. Ten different scenarios were stochastically simulated in a so-called pseudogenomic simulation approach. We showed that many modern dairy cattle breeding goals most likely have negative genetic gain for TR and promising resilience indicators such as the log-transformed, daily deviation from the lactation curve (LnVAR). In addition, there were many ways of improving TR by increasing the breeding goal weight of different resilience indicators. The results showed that adding breeding goal weight to resilience indicators, such as body condition score and LnVAR, could reverse the negative trend observed for resilience indicators. Loss in the aggregate genotype calculated with only current breeding goal traits was 12 to 76%. This loss was mainly due to a reduction in genetic gain in milk production. We observed higher genetic gain in beef production, fertility, and udder health when breeding for more resilience, but from an economical point of view, this was not high enough to compensate for the reduction in genetic gain in milk production. The highest genetic gain in TR was obtained when adding the highest breeding goal weight to LnVAR or TR, both with 0.29 genetic standard deviation units. The indicators we used, body condition score and LnVAR, can be measured on a large scale today with relatively cheap methods, which is crucial if we want to improve these traits through breeding. Economic values for resilience have to be estimated to find the most optimal breeding goal for a more resilient dairy cow in the future.  相似文献   

9.
The objective of the present study was to conduct a stochastic simulation study on the possible benefits of an application of genomic selection in dairy cattle breeding programs according to a variety of selection schemes. In addition, the heritability of the trait in question, the accuracy of genomic breeding values, and the number of animals to be genotyped were varied. Specifically, the question of genotyping males, females, or both, was addressed. Selection schemes were compared with a young bull breeding program. The main criterion for comparison was the average of true breeding values of selected young males to be used as replacements for artificial insemination bulls. Stochastic simulations were run with 50 repetitions each to generate individuals with phenotypes, breeding values estimated by BLUP, and true breeding values. Genomic breeding values were generated from true breeding values with defined accuracy. Examined scenarios included a group of selection schemes that featured genotyping of parents of future bulls only. Such schemes can be viewed as improvements of young bull programs, and they were found to be competitive with or superior to a classical young bull program. However, a genomic breeding program usually involves at least genotyping young male candidates. A second group of selection schemes reflected this requirement. Scenarios in this group were found to be superior over the young bull program by 1.0 to 1.2 standard deviations of the average true breeding value of young male candidates. Within this group of scenarios, one scheme referred to an ideal situation under which genotypes for male calves were available without limitation. Using the average of true breeding values as the criterion for comparison, this idealistic scenario was competitive with other scenarios only if the reliability of genomic breeding values was larger than 0.50. Conventionally, not all males available will have genotypes, and the 2 most promising scenarios included a preselection step for dams of future bulls. This preselection step can be based on conventional BLUP estimated breeding values for bull dams, because differences with a scheme under which both parents and the resulting male offspring are genotyped were marginal. Genotyping of young male candidates should be the focus of activities of today's breeding organizations.  相似文献   

10.
The superiority of selection schemes employing information about a known quantitative trait locus (QTL) over conventional schemes is examined for dairy cattle breeding schemes. Stochastic simulation of a dairy cattle population with selection practices, structures, and parameters similar to the US Holstein population was implemented. Additive genetic effects were estimated by an animal model. Two schemes were compared: a QTL-assisted selection scheme in which the genotype of a known QTL was accounted for in the animal model as a fixed factor, and a QTL-free selection scheme in which the QTL was simulated but was not fit separately in the animal model. Under the QTL-assisted selection scheme, all animals in the mixed model were assumed to be genotyped for the QTL. The effect of using QTL information on the genetic response, the frequency of the favorable QTL allele, and the accuracy of evaluation were examined. Moreover, the effect was studied in four distinct paths of selection: active sires, proven young bulls, bull dams, and first-lactation cows. Average superiority values of 4.6, 7.6, 11.7, and 1.1% for genetic response were observed over 16 yr of selection for active sires, young bulls, bull dams, and first-lactation cows, respectively. Frequency of the favorable QTL allele changed faster in bull dams than males, and was the slowest in first-lactation cows. Finally, accuracy of evaluation under the QTL-assisted selection scheme was higher than under the QTL-free selection scheme. Young bulls ofthe QTL-assisted selection scheme on average had 0.049 higher accuracy, and first-lactation cows had on average 0.185 higher accuracy than corresponding animals of the QTL-free selection scheme.  相似文献   

11.
In Denmark, Finland, and Sweden, the Nordic Total Merit index is used as the breeding selection tool for both organic and conventional dairy farmers based on common economic models for conventional dairy farming. Organic farming is based on the principles of organic agriculture (POA) defined by the International Federation of Organic Agriculture Movements. These principles are not set up with an economic point of view, and therefore it may be questionable to use a breeding goal (BG) for organic dairy production based on economic models. In addition to economics and the principles of organic agriculture, it is important to look at farmers' preferences for improving BG traits when setting up a BG for organic farming. The aim of this research was to set up, simulate, and compare long-term effects of different BG for organic and conventional dairy production systems based on economic models, farmers' preferences, and POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency. The BG based on economic models and on farmers' preferences were taken from previous studies. The other BG were desired gains indices, set up by means of a questionnaire about relatedness between the POA and BG traits. Each BG was simulated in the stochastic simulation program ADAM. The BG based on POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency, caused favorable genetic gain in all 12 traits included in this study compared with 6 traits for the other BG. The BG based on POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency, were very different from BG for organic and conventional production based on economic models and farmers' preferences in both simulated genetic change and correlations between BG. The BG that was created based on the principles of organic agriculture could be used as a specific index for organic dairy farming in Denmark, but this index was economically not very sustainable. Hence, an intermediate breeding goal could be developed by breeding companies to address both economics and the principles of organic agriculture.  相似文献   

12.
In this paper, a translog profit function was applied to estimate the economic values of the traits included in the breeding goal for Norwegian Red dairy cattle. The following 10 traits are included in the breeding goal: milk, meat, mastitis resistance, fertility, calving difficulties, stillbirths, other diseases, udder, temperament, and legs. An empirical implementation that locally approximates the unknown true profit function was suggested and estimated, taking farm heterogeneity into account. The model was applied to a panel data set of 3,259 Norwegian dairy farms over the period 1999 to 2003. Panel data, also called longitudinal or cross-sectional time-series data, are multiple cases (cows, farms, countries, etc.) observed over 2 or more time periods. The data set consisted of farm-level data, including production and economic data from the farm and the estimated breeding values for each cow's sire. The estimated economic values make it possible to test whether genetic selection has been profitable for the farmer, and the extent to which the currently used economic values were optimal during the period 1999 to 2003. Although the translog profit function is quite flexible, it is rather complex, and a simplified version of the model, a Cobb-Douglas profit function, was also estimated. However, the hypothesis that this simpler function adequately describes the data compared with the full translog model was rejected. Further, the hypothesis that the estimated breeding values are profit neutral was rejected (i.e., the hypothesis that there are no interactions between input and output prices on one hand and estimated breeding values on the other). These results indicated that selection not only leads to a parallel shift in profits, but also to changes in input use. Seven of the 10 traits had a significant effect on the farmers’ profit. The 3 traits that were not significant were calving difficulty, stillbirth, and other diseases. The results showed that the breeding program for Norwegian Red cattle has been fairly successful in improving farmers’ profits. However, a slight modification of the breeding goal, such as a reduction in the weights for stillbirths and other diseases and an increase in the weights for meat and temperament, would increase farm profits.  相似文献   

13.
Objectives were to compare the effect of presynchronization and resynchronization methods on fertility responses of grazing dairy cows at first and second artificial insemination (AI) and pregnancy rate during the entire breeding season. Lactating dairy cows (n = 1,263) in 2 seasonal grazing farms were blocked, within farm, by parity, breed and days in milk. Within each block, cows were randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial with 2 presynchronization and 2 resynchronization treatments. Cows had their estrous cycles presynchronized with either a PGF-based program (Presynch) consisting of 2 injections of PGF administered 14 d apart and starting the timed AI protocol 11 d later, or with a PGF-GnRH-based presynchronization program (G6G) consisting of an injection of PGF, followed 3 d later by an injection of GnRH and starting the timed AI protocol 6 d later. All cows received the first insemination on the same day, which was considered study d 0 and also d 0 of the breeding season. All cows received the 5-d timed AI protocol that consisted of GnRH on d −8, PGF on d −3 and −2, and GnRH + timed AI on d 0. Blood was sampled and analyzed for progesterone on d −8. On d 12, cows in each presynchronization treatment either remained as untreated controls (RCON) or received a controlled internal drug-release (CIDR) insert containing progesterone for 7 d (RCIDR). Estrus was observed daily starting on d 19 and cows in estrus were inseminated on the same day. On d 35, bulls were placed with the cows for an additional 65 d, completing a 100-d breeding season. Holstein cows were less likely to have progesterone ≥1 ng/mL on d −8, and had less expression of estrus and pregnancy per AI (P/AI), which resulted in a slower rate of pregnancy and a smaller proportion of pregnancy at the end of the study than did Jersey or crossbred cows. In addition, body condition, days in milk, and plasma progesterone concentration at the first GnRH injection of the timed AI protocol had marked effects on the reproductive performance of lactating grazing dairy cows. A greater proportion of G6G cows had progesterone ≥1ng/mL at the first GnRH injection of the timed AI protocol compared with Presynch cows (82.0 vs. 74.3%). Presynchronization treatment did not influence P/AI, but cows in G6G had increased risk of pregnancy loss between d 30 and 65 after the first AI (12.9 vs. 8.1%). Nevertheless, an interaction between presynchronization and ovarian status was observed, and cows initiating the timed AI with progesterone ≥1 ng/mL had greater P/AI when previously treated with Presynch than G6G. On the other hand, G6G benefited P/AI of cows initiating the timed AI with progesterone <1 ng/mL. Resynchronization with RCIDR altered the pattern of return to estrus, but it did not increase the rate of re-insemination and decreased the proportion of pregnant cows at the end of the 100-d breeding period (80.6 vs. 84.4%).  相似文献   

14.
Based on previous research, we hypothesized that Cosynch at 72 h [GnRH−7 d−PGF2α;−72 h−GnRH + artificial insemination (AI)] would result in a greater number of pregnancies per AI (P/AI) than Cosynch at 48 h. Further, we hypothesized that P/AI would be improved to a greater extent when GnRH was administered at 56 h after PGF2α; before AI at 72 h due to a more optimal interval between the LH surge and AI. Nine hundred twenty-seven lactating dairy cows (n = 1,507 AI) were blocked by pen, and pens rotated through treatments. All cows received GnRH followed 7 d later by PGF2α; and then received one of the following: 1) GnRH + timed AI 48 h after PGF2α; (Cosynch-48); 2) GnRH 56 h after PGF2α; + timed AI 72 h after PGF2α; (Ovsynch-56); or 3) GnRH + timed AI 72 h after PGF2α; (Cosynch-72). Pregnancy diagnoses were performed by ultrasound at 31 to 33 d post-AI and again at 52 to 54 d post-AI. Overall P/AI were similar for the Cosynch-48 (29.2%) and Cosynch-72 (25.4%) groups. The Ovsynch-56 group had a greater P/AI (38.6%) than Cosynch-48 or Cosynch-72. Presynchronized first-service animals had greater P/AI than cows at later services in Cosynch-48 (36.2 vs. 23.0%) and Ovsynch-56 (44.8 vs. 32.7%) but not in Cosynch-72 (24.6 vs. 26.2%). Similarly, primiparous cows had greater P/AI than multiparous cows in Cosynch-48 (34.1 vs. 22.9%) and Ovsynch-56 (41.3 vs. 32.6%), but not Cosynch-72 (29.8 vs. 25.3%). In conclusion, we found no advantage to Cosynch at 72 h vs. 48 h. In contrast, we found a clear advantage to treating with GnRH at 56 h, 16 h before a 72 h AI, probably because of more-optimal timing of AI before ovulation.  相似文献   

15.
The objective of this retrospective observational cohort study, combined with simulation, was to evaluate the effect of extending the voluntary waiting period (VWP) during the summer on profitability on a Florida dairy farm. Data from Holstein cows (n = 1,416) that calved between June and September of 2007 and 2008 were used. Cows that calved between June 1 and July 21 (regular group; REG; n = 719) were artificially inseminated (AI) for the first time upon estrus detection (ED) after the second PGF of the Presynch protocol administered between 57 and 63 d in milk (DIM), or underwent timed AI using the Ovsynch protocol (TAI) if not detected in estrus. Cows that calved between July 22 and September 18 (extended group; EXT; n = 697) underwent AI for the first time after the first or second PGF starting November 14 or November 21 or underwent TAI if not detected in estrus. For second and subsequent AI, all cows underwent AI upon ED or enrolled on TAI after nonpregnancy diagnosis. Following these schemes, average VWP in the REG group and EXT group were 60 and 83 d, respectively. Overall profitability for both experimental and subsequent parities were calculated by subtracting the costs existing of feeding costs ($0.30/kg lactating cow diet; $0.25/kg dry cow diet), breeding costs ($2.65/dose PGF; $2.40/dose GnRH; $0.25/injection administration; $10/semen straw; $5/AI; $3/pregnancy diagnosis), and other costs ($3/d) from the daily revenues with milk sales ($0.44/kg of milk), cow sales ($1.76/kg of live weight), and calf sales ($140/calf). A herd budget simulation was used to predict future cash flow after culling or end of subsequent parity until 6 yr after the start of the study to account for all cash flow consequences of extended VWP. Cows in the EXT group had greater first-service pregnancy per AI (PAI1) but still had greater days open and calving interval. Delaying breeding did not affect total cash flow because the EXT group had greater combined profitability for the experimental parity and subsequent parity but lesser future cash flow. Delayed breeding during the summer increased PAI1 but did not improve overall reproductive efficiency and did not affect overall profitability.  相似文献   

16.
The efficacy of the Ovsynch program in improving conception and pregnancy rates was compared with untreated controls and other synchrony programs in lactating dairy cows. This meta-analysis examined 71 treatment and control comparisons extracted from 53 research papers. Programs evaluated included Ovsynch, natural breeding, single, double, or triple prostaglandin injections, Select Synch, Heat Synch, and modified Ovsynch.Pregnancy rates for Ovsynch programs did not differ significantly from those with natural breeding programs [predicted Bayesian relative risk (RR) = 1.04, 95% Bayesian credible interval = 0.36 to 3.23]. Results of Ovsynch vs. PGF programs showed that the risk of conception (predicted Bayesian RR = 0.89, 95% Bayesian credible interval = 0.31 to 2.64), and pregnancy rates predicted Bayesian RR = 1.11, 95% Bayesian credible interval = 0.61 to 2.13) did not differ significantly between the Ovsynch group and cows in the PGF group. Comparisons between Ovsynch and Select Synch demonstrated that the risk of conception (predicted Bayesian RR = 0.94, 95% Bayesian credible interval = 0.52 to 1.59), and pregnancy rates (predicted Bayesian RR = 1.08, 95% Bayesian credible interval = 0.38 to 3.09) did not differ significantly between the 2 groups. Examination of Ovsynch vs. modified Ovsynch programs showed that the risk of pregnancy in cows synchronized with modified Ovsynch was similar to those treated with Ovsynch (predicted Bayesian RR = 0.89, 95% Bayesian credible interval = 0.71 to 1.12).Meta-analyses identified that the conception and pregnancy rates obtained with the prostaglandin, Select Synch, and modified Ovsynch (including presynch and CoSynch) programs were comparable with the Ovsynch program. Modifications to the Ovsynch program such as presynchronization and timed artificial insemination at the time of second GnRH injection (CoSynch) may be an alternative for reproductive management of dairy herds where detection of estrus is less than optimal. The findings of this study demonstrate that the Ovsynch program could benefit dairy operations because it allows for timed artificial insemination of lactating cows without detection of estrus. There was, however, little or no significant improvement in pregnancy rates using Ovsynch over other programs and the costs of labor and hormone administration should be considered when selecting this form of reproductive technology for routine use.  相似文献   

17.
Conception to synchronized ovulation (Ovsynch) using injections of GnRH and PGF2alpha and timed artificial insemination has been shown to be maximized when the program is initiated 5 to 12 d after estrus. The objective of this double-blinded field trial was to assess the effect of one injection of PGF2alpha, 10 d before the Ovsynch program, on the probability of pregnancy at first insemination in lactating dairy cows. The hypothesis was that cows that underwent luteolysis in response to PGF2alpha would be between 5 and 8 d postestrus at the start of Ovsynch. In five commercial dairy herds in Ontario, Canada, at 52 +/- 12 d in milk, 506 cows were assigned at random to receive either one i.m. injection of 500 microg of cloprostenol or saline. Ten days later, all cows received 100 microg of GnRH i.m., followed in 7 d by 500 microg of cloprostenol i.m. and 100 microg of GnRH i.m. 48 h later. All cows were artificially inseminated 0 to 20 h after the second injection of GnRH, without regard to detection of estrus. Pregnancy was diagnosed by transrectal palpation at least 35 d after insemination. The probability of pregnancy after first insemination was modeled with logistic regression, accounting for the correlation of cows with herd and the effect of season of calving. There was no difference in pregnancy risk between cows that received PGF2alpha presynchronization and controls (37.3 and 36.6%, respectively; odds ratio = 1.03, 95% confidence interval, 0.88 to 1.20). Parity and days in milk at insemination were not significant covariates.  相似文献   

18.
Our objectives were to determine pregnancy rates after altering times of the second GnRH injection, insemination, or both in a combined Presynch + Ovsynch protocol, to accommodate once-daily lockup of dairy cows. Lactating dairy cows (n = 665) from 2 dairy herds in northeastern Kansas were studied. Cows ranged from 24 to 44 d in milk (DIM) at the start of the Pre-synch protocol, which consisted of 2 injections of PGF(2alpha) 14 d apart, with the second injection given 12 d before initiating the Ovsynch protocol. Cows were blocked by lactation number and assigned randomly to 3 treatments consisting of variations of the Ovsynch protocol. Cows in 2 treatments received injections of GnRH 7 d before and 48 h (G48) after the PGF(2alpha) injection. Timed AI (TAI) was conducted at the time of the second GnRH injection (G48 + TAI48) or 24 h later (G48 + TAI72). Cows in the third treatment received the injections of GnRH 7 d before and at 72 h after PGF(2alpha) and were inseminated at the time of the second GnRH injection (G72 + TAI72). Pregnancy was diagnosed weekly by palpation per rectum of uterine contents on d 40 or 41 after TAI. Pregnancy rates differed between herds, but they were consistently greater for G72 + TAI72 than for G48 + TAI48 and G72 + TAI72. Subsequent calving rates were consistent with differences in initial TAI pregnancy rates. Pregnancy loss was least for cows on the G72 + TAI72 treatment. Body condition scores (BCS) ranged from 1.0 to 4.0 when assessed on Monday of the breeding week. An interaction of BCS and herd was detected in which cows in herd 1 having poorer BCS (<2.25) had greater pregnancy rates than cows of greater BCS (>/=2.25), whereas the reverse was true in herd 2 in which overall pregnancy rates were greater. We concluded that inseminating at 48 or 72 h after PGF(2alpha), when GnRH was administered at 48 h after PGF(2alpha), produced fewer pregnancies than inseminating and injecting GnRH at 72 h after PGF(2alpha) for cows whose estrous cycles were synchronized before initiating this variant of the Ovsynch protocol.  相似文献   

19.
A comparison of dairy cattle breeding designs that use genomic selection   总被引:1,自引:0,他引:1  
Different dairy cattle breeding schemes were compared using stochastic simulations, in which the accuracy of the genomic breeding values was dependent on the structure of the breeding scheme, through the availability of new genotyped animals with phenotypic information. Most studies that predict the gain by implementing genomic selection apply a deterministic approach that requires assumptions about the accuracy of the genomic breeding values. The achieved genetic gain, when genomic selection was the only selection method to directly identify elite sires for widespread use and progeny testing was omitted, was compared with using genomic selection for preselection of young bulls for progeny testing and to a conventional progeny test scheme. The rate of inbreeding could be reduced by selecting more sires every year. Selecting 20 sires directly on their genomic breeding values gave a higher genetic gain than any progeny testing scheme, with the same rate of inbreeding as the schemes that used genomic selection for preselection of bulls before progeny testing. The genomic selection breeding schemes could reduce the rate of inbreeding and still increase genetic gain, compared with the conventional breeding scheme. Since progeny testing is expensive, the breeding scheme omitting the progeny test will be the cheapest one. Keeping the progeny test and use of genomic selection for preselection still has some advantages. It gives higher accuracy of breeding values and does not require a complete restructuring of the breeding program. Comparing at the same rate of inbreeding, using genomic selection for elite sire selection only gives a 13% increase in genetic gain, compared with using genomic selection for preselection. One way to reduce the costs of the scheme where genomic selection was used for preselection is to reduce the number of progeny tested bulls. This was here achieved without getting lower genetic gain or a higher rate of inbreeding.  相似文献   

20.
Genetic evaluation and selection is one strategy for improving female reproductive performance. Many producers use synchronization of ovulation or estrus to manage reproduction. The objective of this study was to examine the effects of reproductive synchronization on genetic parameter estimates of days to first breeding (DFB), days open (DO), and pregnancy rate at 120 d postpartum (PR120). Data were collected from 64 producers participating in an artificial insemination progeny testing program and using Dairy Comp 305 herd management software to record reproductive treatments and events. Data included 18,359 records for DFB and 16,379 records for DO and PR120. Synchronization was classified by breeding codes at time of insemination. The traits DFB and DO were analyzed using a linear model with age at calving, herd-year-season, and parity as fixed effects and sire and residual as random effects. For PR120, a threshold sire model was used with fixed effects as in the DFB and DO models. Three models were applied to the complete data sets of all traits; a base model with no synchronization effect, an expanded model with a fixed synchronization effect, and an interaction model with a random sire by herd management interaction. Herd management categories were based on an individual herd's use of synchronization protocols. Also, data subsets were analyzed separately based on cow synchronization treatment and herd management categories. Synchronized records for DFB had on average 40% higher sire variance and 60% lower residual variance than nonsynchronized records. Heritability for DFB ranged from 0.01 to 0.09. Sire variance was 40% lower for DO and 25% lower for PR120 in first synchronized records than either later-synchronized or nonsynchronized records. Residual variances for DO varied by 3% among cow treatment categories and 14% for herd management categories. Heritabilities ranged from 0.03 to 0.07 for DO and 0.10 to 0.26 for PR120. Including a fixed effect for synchronization in the DO model reduced sire variance by 33% and residual variance by 10%. Sire by herd management interactions were less than 2% of the total variance for all traits. Accounting for synchronization, especially for DFB, may improve accuracy of genetic parameter estimates and animal evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号