首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Premixed diesel engines have the potential to achieve a more homogeneous, leaner mixture near TDC compared to conventional diesel engines. Early studies have shown that the fuel injection timing and injection angle affect the mixture formation in a HCCI (Homogeneous Charge Compression Ignition) engine. Therefore in this study, we investigated the relationship between combustion and mixture formations accordance with injection conditions in a common rail direct injection type HCCI engine using an early injection strategy. From this results, we found that the fuel injection timing and injection angle affect the mixture formation and in turn affect combustion in the HCCI engine. In addition, this study revealed that the injection angle of 100° is effective to reduce smoke emission without any sacrificing power in the early injection case.  相似文献   

2.
加装文丘里管的高压废气再循环(Exhaust gas re-circulation,EGR)进气系统,在兼顾柴油机经济性、动力性的前提下,研究该进气系统对NO_x排放的影响。根据一款柴油机的基本结构建立柴油机一维仿真计算模型和燃烧室的三维仿真计算模型。在对模型进行标定和对柴油机原机性能仿真计算的基础上,为进气系统引入文丘里管装置并对其结构参数进行优化设计。应用所建立的一维和三维柴油机模型,对文丘里管EGR系统柴油机的经济性、NO_x和Soot排放特性进行仿真计算研究,并对计算结果进行试验验证。研究结果表明,优化设计的文丘里管EGR系统可使柴油机在欧洲稳态循环(European steady state cycle,ESC)各工况下实现较为理想的EGR率,并在不明显影响柴油机燃油经济性的前提下,使NO_x排放量下降了约28.4%。文丘里管进气系统可以实现较为理想的高压EGR循环,在柴油机ESC工况下(怠速除外)能够达到较为理想的EGR率。  相似文献   

3.

In this investigation, an attempt has been made to study by varying the charge temperature on the ethanol fueled Homogeneous charge compression ignition (HCCI) combustion engine. Ethanol was injected into the intake manifold by using port fuel injection technique while the intake air was heated for achieving stable HCCI operation. The effect of intake air temperature on the combustion, performance, and emissions of the ethanol HCCI operation was compared with the standard diesel operation and presented. The results indicate that the intake air temperature has a significant impact on in-cylinder pressure, ringing intensity, combustion efficiency, thermal efficiency and emissions. At 170°C, the maximum value of combustion efficiency and brake thermal efficiency of ethanol are found to be 98.2% and 43%, respectively. The NO emission is found to be below 11 ppm while the smoke emission is negligible. However, the UHC and CO emissions are higher for the HCCI operation.

  相似文献   

4.
为了提升柴油机应用过程有害废气排放控制的效果,提出基于 EGR 耦合米勒循环的柴油机排放控制技术。以燃油燃烧各阶段为基础,构建柴油机燃烧模型,分别深入分析 EGR 技术与米勒循环技术对废气排放的影响,衡量指标为 EGR 率与米勒度。以废气排放影响分析结果为依据,以排放控制效果最佳为目标,确定 EGR 技术与米勒循环技术的最佳耦合方案,实现柴油机废气排放的最佳控制。实验数据表明,应用 EGR 耦合米勒循环技术后,废气排放量低于实际废气排放量,并低于 EGR 技术与米勒循环技术对应排放量,充分证实了该技术具备较好的排放控制效果,为大气环境保护提供帮助。  相似文献   

5.
In this study, experiments on the simultaneous reduction of smoke and NOx emissions of indirect-injection (IDI) diesel engines were conducted using a biodiesel fuel (BDF) and ethylene glycol mono-n-butyl ether (EGBE), which is an oxygenated fuel of mono-ethers, as a pre-processing method and by applying cooled EGR. A four-cylinder, water-cooled IDI diesel engine was used, while the engine performance and emission characteristics were considered using diesel fuel, BDF 100%, and a mixed fuel BDF and EGBE (maximum EGBE mixing ratio in mixed fuel: 20 vol-%). Results showed the BDF and the BDF and EGBE mix had significantly better smoke reduction effects than the diesel fuel. In particular, the use of the BDF and EGBE mix and the simultaneous application of 10% cooled EGR were confirmed to have reduced both smoke and NOx emissions.  相似文献   

6.
Due to the shortage of petroleum products and its increasing cost, efforts are on to develop alternate fuels, especially diesel oil, for partial or full replacement. Also, internal combustion engines generate undesirable emissions during combustion process. The emissions exhausted in to the surroundings pollute the atmosphere and causes several problems. The emissions of concern are: unburnt hydrocarbons, oxides of carbon, and oxides of nitrogen (NOX). Advanced diesel fuel formulations offer significant emission reductions to new and older in-use engines every time the fuel tank is filled. The addition of water to diesel fuel lowers particulate emissions by serving as diluents to the key combustion intermediates that lead to particulate formation. The incorporation of water also reduces NOX emissions by lowering the peak combustion temperatures through high heat of vaporization. When using water blend diesel, the engine fuel system recognizes the liquid as diesel fuel because the water droplet is encapsulated within a diesel fuel. In this experiment, we have used single cylinder four-stroke engine and the water-blend diesel emulsion is used and the diesel emission test, emulsion emission test, and various gases has been analyzed; smoke meter test is also conducted for various rate of loads. The test results from the engine fuelled with water-blend diesel showed reduction in emissions as compared to that of engine fuelled with conventional diesel. The better emissions in the CI engine using water-blend diesel is due to the incorporation of water which reduces NOX emissions by lowering the peak combustion temperatures. Water-blend fuel enhances fuel atomization by micro-explosion. The addition of water to diesel fuel lowers particulate emissions by serving as diluents to the key combustion intermediates that lead to particulate formation  相似文献   

7.
We investigated the effect of intake air enrichment on the performance, combustion, and emission characteristics of a single cylinder direct-injection stationary diesel engine fueled with non- edible alternative fuel, namely, cardanol — diesel — methanol blend (B20M10). The results were compared with baseline diesel operations under standard operating conditions. The bio-fuel blend B20M10 (20% cardanol, 10% Methanol, and 70% diesel) was used as fuel and the combustion, performance, and emission characteristics were investigated by oxygen enriching of intake air with 3, 5, and 7 percentage by weight. With the increase of intake air oxygen concentration, CO, HC, and smoke were found to be decreased. But BTE and NOx emission were considerably increased. The blended fuel B20M10 with 7% oxygen enrichment of intake air was compared with diesel operation. The results show a 0.5% lesser BTE, 28% more NOx emission at full load condition. There is not much variation of smoke emission to be noticed for this fuel combination compared to diesel.  相似文献   

8.
To draw a comparison of the effect of multiple injection strategy on the engine-out emissions under two different EGR rate conditions, the effect of pilot injection on emissions and combustion was evaluated and discussed in part 1. Thus, in the second research as part 2, the effects of post injection on the engine-out emissions were systemically evaluated for two different EGR rate conditions (30 % and 60 %). Since the behavior of diesel combustion is significantly different as EGR rate is changed, the characteristics of post injection was different between two EGR rate conditions. This research was investigated as varying injection parameters such as the timing and quantity of the post injection. The results show that the close post injection with injection interval as 10 degree has the potential to reduce PM emission, regardless of EGR rate. However, the reason of reduction of PM emission is different for each case. For a moderate EGR rate condition, close post injection with interval 10 degree enhances the fuel at bottom of bowl. Thus, the distribution of fuel can be improved. On the other hand, for a heavy EGR rate condition, close post injection with interval 10 degree has the charge cooling effect to prolong the ignition delay, rather than well-matched injection targeting. Especially, there is an effect to oxidize PM emission under moderate EGR rate condition as post injection is applied. However, post injection for late cycle of combustion under heavy EGR rate condition does not oxidize PM emission due to low oxygen concentration (~ 10%).  相似文献   

9.
In the present investigation a volatile fraction of Pinus resin called Turpentine has been experimented in a direct injection diesel engine under HCCI combustion mode. The engine chosen to experiment is a single cylinder DI diesel engine and modified in such a way to ignite Turpentine in a diesel engine under HCCI mode. As the Turpentine has a higher self ignition temperature the ignition of Turpentine in regular diesel engines with auto-ignition is not possible. Hence, suitable modification is made in the engine to ignite Turpentine in a diesel engine like diesel fuel. The modified engine has ECM controlled fuel spray and an air preheater in the suction side of the engine. The combined effort of adiabatic compression and supply of preheated air ignites turpentine by auto-ignition and its timing of ignition is precisely controlled by changing intake air temperature. This investigation revealed that the engine operated with turpentine performed well with little loss of brake thermal efficiency. And, emitted comparatively lower emissions such as NOx and smoke and proved that the turpentine is a best suited fuel for HCCI operation.  相似文献   

10.
Owing to the increasing cost of petroleum products, fast depletion of fossil fuel, environmental consideration and stringent emission norms, it is necessary to search for alternative fuels for diesel engines. The alternative fuel can be produced from materials available within the country. Though the vegetable oils can be fuelled for diesel engines, their high viscosities and low volatilities have led to the investigation of its various derivatives such as monoesters, known as bio diesel. It is derived from triglycerides (vegetable oil and animal fates) by transesterification process. It is biodegradable and renewable in nature. Biodiesel can be used more efficiently in semi adiabatic engines (Semi LHR), in which the temperature of the combustion chamber is increased by thermal barrier coating on the piston crown. In this study, the piston crown was coated with ceramic material (TiO2) of about 0.5 mm, by plasma spray method. In this present work, the experiments were carried out with of Pongamia oil methyl (PME) ester and diesel blends (B20 & B100) in a four stroke direct injection diesel engine with and without coated piston at different load conditions. The results revealed 100% bio diesel, an improvement in brake thermal efficiency (BTE) and the brake specific fuel consumption decreased by about 10 % at full load. The exhaust emissions like carbon monoxide (CO) and hydrocarbon (HC) were decreased and the nitrogen oxide (NO) emission increased by 15% with coated engine compared with the uncoated engine with diesel fuel. The peak pressure and heat release rate were increased for the coated engine compared with the standard engine.  相似文献   

11.
The EGR system has been widely used to reduce nitrogen oxides (NOx) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance, NOx and the other exhaust emissions from 1. 5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NOx and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COVimep) and the timings of maximum pressure (Pmax) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC).  相似文献   

12.
为了实现废气再循环(EGR)阀电路控制性能能够满足车载诊断系统(OBD)的排放要求,应用主元分析(PCA)和回声状态网络(ESN)的融合理论,提出了柴油机EGR阀控制电路故障在线诊断策略.利用PSpice软件对EGR阀电路故障仿真的采样值作为PCA输入值,电路各元器件故障代码作为ESN输出值,进行了柴油机EGR阀电路故障的在线训练与诊断.基于PCA-ESN融合诊断策略,进行了EGR阀电路故障在线诊断试验.结果表明:故障诊断的正确率为94.3%;误判率为0.58%;拒绝率为0.15%.该诊断策略能够快速实现故障诊断及定位,确保了柴油机EGR阀在各种工况下快速、准确和可靠开启.  相似文献   

13.
This study was to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in an IDI diesel engine. The fuel injection timing was also controlled to investigate a method for the simultaneous reduction of smoke and NOx when water was injected into the combustion chamber. The formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water played a role as a heat sink during evaporating in the combustion chamber, while the smoke was slightly increased with increased water amount. Also, NOx emission was significantly decreased with increase in water amount. A simultaneous reduction in smoke and NOx emissions was obtained when water was injected into the combustion chamber by retarding more 2°CA of the fuel injection timing than without water injection.  相似文献   

14.
As EURO-6 regulations will be enforced in 2014, simultaneous reduction of NOx and PM emissions becomes an important issue in recent diesel engine research. New combustion concepts, such as LTDC and pHCCI, have been introduced to overcome the NOx and PM trade-off relation. However, these novel combustion concepts are usually implemented with a high EGR rate and by advancing the main injection timing which cause high CO and THC emissions along with poor fuel consumption due to low combustion efficiency. Therefore, the split injection strategy, which was consisted of applying post injection close to the main injection, was carried out in this experiment. Specifically, two different nozzles — a 7-hole conventional nozzle and a 12-hole double-row nozzle — were evaluated to determine the effects of nozzle configurations on engine-out emissions. The result shows that CO emission was reduced by the close post injection strategy regardless of the nozzle configuration. However, THC and PM emissions were reduced only when the 12-hole double-row nozzle was used. Thus, the use of close post injection with the 12-hole double-row nozzle could increase the combustion efficiency in heavy EGR conditions.  相似文献   

15.
The world is faced with a problem of air pollution due to the exhaust emissions from automobile. Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of these problems. There are many alternative fuels studied in place of diesel fuel made from petroleum. Biodiesel fuel (BDF) is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of BDF, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in an IDI diesel engine. Emissions were characterized with a neat BDF and with a blend of BDF and conventional diesel fuel. Since the BDF includes oxygen of about 11%, it could influence the combustion process strongly. Therefore, the use of BDF resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that BDF can be utilized effectively as a renewable fuel for IDI diesel engines.  相似文献   

16.
An experimental study was conducted on a single cylinder direct injection diesel engine to investigate the effects of diluting intake air, with different gases and increasing intake pressure on combustion process and exhaust emissions. The intake O2 concentration is changed from 15% to 21% by diluting intake air with different gases (CO2, Ar, N2), and the intake pressure is changed from one to two bar by a screw compressor. A modified program for calculating heat release rate, is used to study the characteristics of combustion and exhaust emissions in detail. The main results show that the addition of either CO2 or Ar to the intake air increases the ignition delay. The variations of ignition delay with CO2 are much larger than those of ignition delay with Ar for the same O2 concentration. The emission of NOx decreases with the decrease of O2 concentration and the smoke level is lower with the addition of the CO2 than with that of Ar. As the intake pressure is increased, the ignition delay is shortened. Furthermore the high intake air pressure enhances the air-fuel mixing and diffusion combustion, and reduces the premixed combustion, so that NOx emission is decreased without increasing smoke emissions. The addition of CO2 at high intake pressure, drastically reduces NOx emissions and smoke emission simultaneously at a high load condition, and the addition of CO2 reduces NOx emissions without affecting the smoke emissions substantially at a low load condition. A zero-dimensional combustion simulation program incorporated with the present heat release correlation and ignition delay correlation is used to predict ignition delay, cylinder pressure and engine power. The results show that the correlations are likely to be adequate for the engine operating under diluted intake air and various intake pressure.  相似文献   

17.
The accuracy of any empirical result is a direct consequence of the quality of experimental setup and the strict control over testing conditions. For internal combustion engines, a large number of parameters that also exhibit complex interdependence may significantly affect the engine performance. Therefore, this work describes the essentials required to establish a high-quality diesel engine research laboratory. A single-cylinder diesel engine is taken as the fundamental building block and the requirements for all essential sub-systems including fuel, intake, exhaust, coolant and exhaust gas recirculation (EGR) are laid out. The measurement and analysis of cylinder pressure, and exhaust gas sampling/conditioning requirements for emission measurement are discussed in detail. The independent control of EGR and intake boost is also highlighted. The measurement and analysis techniques are supported with empirical data from a single-cylinder diesel engine setup. The emphasis is on providing the necessary guidelines for setting up a fully-instrumented diesel engine test laboratory.  相似文献   

18.
在一台ZX195型单缸柴油机上,通过在柴油中添加甲醇含氧燃料及适量的添加剂,研究了在高原地区常用工况下含氧混合燃料对柴油机性能及排放的影响。试验结果表明,含氧混合燃料可以有效改善柴油机的烟度排放,在大负荷下尤为明显。而对动力性影响很少,经济性得到改善。  相似文献   

19.
The effects of EGR (Exhaust Gas Recirculation) on heavy-duty diesel engine performance, NO and soot emissions were numerically investigated using the modified KIVA-3V code. For the fuel spray, the atomization model based on the linear stability analysis and spray wall impingement model were developed for the KIVA-3V code. The Zeldovich mechanism for the formation of nitric oxide and the soot model suggested by Hiroyasu et al. were used to predict the diesel emissions. In this paper, the computational results of fuel spray, cylinder pressure, and emissions were compared with experimental data, and the optimum EGR rates were sought from the NO and soot emissions trade-off. The results showed that the EGR is effective in suppressing NO but the soot emission was increased considerably by EGR. Using cooled EGR, soot emission could be enhanced without worsening of NO.  相似文献   

20.
Particulate matters (PM) from diesel combustion comprise the major portion of harmful components of air in urban areas. In this study, the effects of DOC and/or CDPF on the size distributions and catalytic reactions of these nano-sized particles were investigated to clarify the exhaust mechanism and to minimize the emission of the nano-sized PM. Parameters of interest in the investigation included sulfur content of the fuels used, air-fuel equivalence ratio, fuel injection pressure, and the engine speed. The number concentration of the particles in diluted exhaust gas was measured by a SMPS in the diametric range of 10–385 nm. The number of nanometer-sized particles increased when the engine was operated at high equivalence ratio with diesel fuel that contained 500 ppm of sulfur. As the sulfur concentration in the fuel increased, the number of the particles smaller than 30 nm increased upon passing DOC and CDPF in the exhaust system of the common-rail diesel engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号