首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
含不同气体煤岩全应力-应变渗透特性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分别以吸附性气体甲烷(CH4)、二氧化碳(CO2)和“非吸附性”气体氦气(He)为渗流介质,在三轴伺服渗流装置上进行了含不同气体煤岩全应力-应变加载过程煤岩渗透特性的研究。试验结果表明:三种气体的渗透率-应变曲线变化趋势相近,其相对应力-应变曲线变化有明显滞后性,吸附性气体的滞后性表现较为明显;在弹性到屈服点阶段和应变软化阶段,煤样渗透率与有效应力呈负指数关系;煤样对不同吸附能力的气体,其渗透率之间存在明显差异性;对煤样进行饱和吸附后,二氧化碳和甲烷所测渗透率较之氦气测得的(视为煤样绝对渗透率)平均减小了55%,且二氧化碳所测渗透率小于甲烷。  相似文献   

2.
页岩气开采过程,其储层页岩渗透率受多重因素的影响。采用自主研发的多场耦合作用下不同相态CO2致裂驱替CH4实验装置,实验研究了有效应力、孔隙压力、温度以及吸附膨胀效应等因素对裂隙页岩体与型岩渗透特性的影响。结果表明:(1)页岩渗透率随有效应力增加呈负指数关系减小,且型岩对于有效应力变化具有更强的敏感性;(2)在相同应力状态下,由于吸附引起的差异性膨胀效应会降低页岩渗透率,不同气体作用下测得的页岩渗透率表现为He>N2>CO2。(3)两种页岩中渗透率随孔隙压力变化规律具有差异性。SC-CO2致裂页岩在低压条件下Klingkenberg效应不明显,渗透率随平均孔隙压力的增大而增大,型岩在低压阶段由于Klingkenberg效应对渗透率变化起主导作用,随着孔隙压力增加,其渗透率降低,在达到极小值后,随着孔隙压力的增加,Klingkenberg效应减弱,有效应力起主导作用,渗透率随孔隙压力增加而增加;(4)温度作用通过改变页岩的孔隙结构、力学性质等控制页岩渗透率的变化,随着温度增加,页岩渗透率降低。因此,在页岩气开采过程以及CO2强化页岩气开采过程需要考虑多因素耦合作用对页岩渗透率的影响。  相似文献   

3.
利用自制 WSD-800电液伺服试验装置,将取自南桐东林煤矿6#煤层的煤加工成成型煤样作为研究对象,分别通入He、N2、CH4、CO2气体研究了其全应力-应变过程中的变形特性、有效应力、体应变与渗透率关系。结果表明:(1)型煤样在整个全应力-应变过程中,渗透率与体应变变化关系密切。渗透率先随体应变的增加而降低,到达应变屈服点时渗透率最低,然后随体应变减少而增大。(2)通入的气体不同时,型煤样在全应力-应变过程中体应变随轴向应变变化的变化梯度不同;其梯度的变化与变形的泊松比有关。(3)不同气体条件下的型煤样的渗透率与体应变呈负指数关系。研究成果可为研究煤矿地下开采煤岩体的变形和高效抽采瓦斯提供参考。  相似文献   

4.
基于断裂力学和莫尔-库伦准则,建立了不同初始应力状态下CO2注入煤层后储层、盖层岩石破裂准则以及断层活化失稳判据,对封存系统地层稳定性进行了分析,提出了确定CO2临界注入压力的解析方法,并对影响CO2封存安全性的参数(Shmin/Sv、储层盖层岩石弹模、泊松比、断层倾角等)进行了敏感性分析。结果表明:在进行地层稳定性预测时,应充分考虑煤层初始应力状态、吸附引起的差异性膨胀效应以及储层岩石力学性质的影响。煤岩泊松比越小,储层滑动倾向性越小;当Shmin/Sv(最小水平主应力与垂直应力之比)接近于1时,断层滑动的风险大为降低。研究成果可以为不可采煤层CO2封存工程储层压力控制以及安全评价提供科学依据。  相似文献   

5.
吸附不同气体对煤岩渗透特性的影响   总被引:3,自引:2,他引:1  
注CO2或者CO2/N2混合气强化煤层气开采以及进行CO2封存时,气体的吸附/解吸会影响煤岩的渗透特性。采用自行研制的煤岩三轴渗流装置进行恒定有效应力、不同气体压力条件下,煤岩吸附纯CO2,CH4,N2以及不同配比的CO2/N2混合气体对渗透特性影响的试验研究,以探讨煤岩在气体压力以及吸附作用下渗透特性的变化规律。结果表明:(1)气体组分固定的条件下,煤样渗透率随气体压力的增加呈负指数减小。(2)相同气体压力条件下,煤样吸附气体后渗透率都有不同程度的下降,且下降幅度跟吸附气体的组分有关,吸附纯CO2下降的幅度最大,吸附CH4次之,吸附N2最小;吸附CO2/N2混合气时,其中CO2组分浓度越高,煤样渗透率越低,但当N2量达到一定比例时,煤样渗透率会得到改善。(3)气体压力加卸载过程得到的煤岩渗透率–气体压力关系曲线存在滞后现象,这与气体在煤岩中的吸附/解吸曲线滞后有关,因此煤岩渗透率跟压力路径有关。试验结果对于煤矿瓦斯抽采以及CO2或烟道气注入煤层后的储层渗透率的预测与控制具有重要指导意义。  相似文献   

6.
当利用超临界CO2作为钻井液钻进页岩地层时,井壁稳定是重点关注问题。超临界CO2与页岩相互作用复杂,而对于超临界CO2吸附效应对超临界CO2开发页岩油气资源过程中的井壁稳定性影响则研究较少。本文将超临界CO2吸附效应对页岩变形和力学性质影响纳入到超临界CO2渗流的多物理场耦合过程中,在超临界CO2运输特性和热力学特性的基础上,构建考虑吸附效应的超临界CO2钻井多物理场耦合井壁稳定模型。基于有限元数值计算方法,分析超临界CO2钻进过程中的地层温度、孔隙压力和地层应力的时空分布规律,研究超临界CO2吸附效应对井壁稳定性的影响。结果表明:超临界CO2吸附效应引起的固体变形对地层温度和流体渗流没有明显影响;吸附效应对应力分布具有显著影响,吸附应变会使应力值增大,而吸附对弹性模量的影响则会使应力值降低;忽略吸附应变会小幅度低估井壁失稳风险,而忽略吸附对页岩弹...  相似文献   

7.
为研究深部煤岩开采过程中含水率、有效应力与裂隙压缩性对煤岩渗透率的影响规律,利用HCA型高压容量法吸附装置和含瓦斯煤热-流-固三轴伺服渗流装置分别进行不同含水率条件下煤岩的等温吸附试验和渗流试验。在此基础上建立考虑含水率与裂隙压缩性综合作用的煤岩渗透率模型,并分析煤岩在不同含水率条件下,煤岩有效压缩性系数与渗透率的响应机制。结果表明:(1)气体压力恒定为1.0MPa时,煤岩轴向应变与径向应变随有效应力的增大而增大;而在有效应力不变,煤岩含水率变化的过程中,其轴向应变与径向应变随含水率增大逐渐减小,瓦斯流量也随含水率的增大而减小。(2)随着气体压力的增大,煤岩瓦斯吸附量先增大后趋于平缓,在气体压力持续增大的过程中,吸附量逐渐趋于饱和,等温吸附曲线的变化逐渐趋于平缓。(3)在同一含水率条件下,煤岩渗透率随有效应力的增大而减小。当有效应力恒定时,水分对煤岩的渗透率的大小具有抑制作用,即含水率增大过程中渗透率呈减小趋势。不同含水率下煤岩的吸附变形量与有效压缩性系数之间呈负相关,且有效压缩性系数随含水率的增大而减小。(4)建立了考虑含水率和裂隙有效压缩性综合作用的煤岩渗透率模型,其中渗透模型计算...  相似文献   

8.
为探讨不同CO2相变致裂压力对纳米孔隙的尺度改造效应及其对瓦斯(煤层气)运移的影响,开展120,150,185 MPa作用下的CO2相变致裂煤体实验,综合采用高压压汞、低温液氮吸附、低温CO2吸附孔隙结构参数测试方法,分析CO2相变致裂后煤的大孔(>50 nm)–介孔(2~50 nm)–微孔(<2 nm)结构演化特征。结果表明:CO2相变致裂对大孔和介孔具有扩孔效应;致裂后,大孔平均孔径与孔容大幅度增大,孔表面积降低;介孔平均孔径增大,孔表面积明显降低;孔隙连通性明显增强。CO2相变致裂过程时间极短,高压气体优先选择裂隙和大尺度孔隙进行扩展,延伸至微孔时,衰减的压力不足以改造具有化学性质的微孔。CO2相变致裂在大孔–介孔尺度的扩孔效应,随致裂压力的增大而增强;不同变质、变形程度煤的大孔–介孔–微孔发育存在差异;因此,研发“高致裂压力–长作用时效–大能量”的CO2相变致裂器,有助于进一步增强CO  相似文献   

9.
利用自主研发的含瓦斯煤热流固耦合三轴伺服渗流装置,以无烟煤型煤试件为研究对象,进行不同轴压、围压条件下气体压力加卸载过程中渗流试验研究,模拟不同煤层深度,以探讨煤变形及瓦斯运移演化规律.研究结果表明:(1)在加载过程中,煤应变量减小,吸附瓦斯产生较大的膨胀变形,呈现线性关系,在卸载过程中,煤应变呈增大趋势,煤逐渐被压缩.随轴压、围压增大,下降单位气体压力引起的煤应变升高量降低,应变响应程度减小.(2)在加载过程中,随气体压力升高,渗透率先减小后增大趋势,煤渗透率呈类似“V”型变化趋势,气体压力在1.2 MPa左右存在明显的拐点,体现煤孔隙扩张的程度和吸附瓦斯层增厚程度影响,依赖于吸附作用或有效应力占主导地位.在卸载过程中,随着气体压力降低,煤渗透率呈先减小后增大趋势,渗透率增大且变化速度加快,主要依赖有效应力作用或基质收缩的主导地位差异.(3)随有效应力的增大,煤渗透率呈先减小后增大的趋势.煤渗透率随有效应力增大呈对数函数或指数函数关系.(4)气体压力具有典型二阶段特征,同时渗透率与体积应变具有密切关系,体现出有效应力、吸附膨胀与煤基质收缩同时对裂隙等内部结构的影响.  相似文献   

10.
含瓦斯煤岩固气耦合动态模型与数值模拟研究   总被引:3,自引:0,他引:3       下载免费PDF全文
首先在多孔介质的有效应力原理中引入瓦斯吸附的膨胀应力,推导出了适用于含瓦斯煤岩的有效应力计算公式。通过分析含瓦斯煤岩的孔隙度和渗透率在不同变形阶段的变化特点,在前人的研究成果基础上,建立了含瓦斯煤岩的孔隙度和渗透率的动态模型。假设含瓦斯煤岩是一种各向同性的弹塑性材料,同时考虑瓦斯吸附的影响,得出了含瓦斯煤岩的应力场方程和渗流场方程,建立了能描述固气耦合情况下煤岩骨架可变形性和瓦斯气体可压缩性的含瓦斯煤岩的固气耦合模型。最后通过给定模型的定解条件和相关参数,利用有限元方法建立了相关的数值计算模型,并得出了含瓦斯煤岩固气耦合模型的数值解。研究成果对进一步充实和完善含瓦斯煤岩固气耦合理论有一定意义。  相似文献   

11.
CO2驱替煤层CH4试验研究   总被引:4,自引:1,他引:4  
 通过对大煤样试件(100 mm×100 mm×200 mm)进行注CO2驱替煤层CH4试验,较真实地模拟在煤层中储存CO2以及驱替开采煤层气的过程。研究发现:CH4在煤体中渗透率与体积应力呈负指数相关规律;煤体对CO2的渗透率高于对CH4气体的渗透率2个数量级以上;随体积应力及驱替压力的不同,单位体积煤体可储存17.47~28.00体积CO2,CO2/CH4置换体积比可达7.03~13.91;在恒定体积应力及驱替压力条件下,CO2注入、CH4置换、产出均能够平稳进行;2种不同煤层CH4含量条件与驱替置换方式下,产出气体中初期CH4含量高达20%~50%,随时间延续产出气体中CH4含量有所下降,但仍能持续保持在10%~16%;驱替压力、驱替速度、注入倍数、煤层CH4含量、储层结构及其渗透性等因素共同决定着CO2/CH4驱替置换效果;在CO2注入煤体进行置换吸附期间,受气体吸附解吸、煤基质自身变形等因素影响,煤体会发生膨胀现象。该研究成果对CO2煤层处置及驱替置换开采煤层气实践具有重要理论意义与指导价值。  相似文献   

12.
富含黏土矿物的陆相页岩气储层在传统水基压裂过程中易出现基质黏土吸水膨胀现象,降低页岩双重孔隙介质渗透特性,使得页岩气开采遇到一定的阻碍。因此,针对高水敏性页岩气储层,采用CO2等无水压裂技术的特性研究显得愈发重要。采用延长陆相页岩和致密砂岩试样开展CO2与清水室内压裂对比试验,揭示了CO2压裂起裂及扩展特征。实验结果表明:CO2压裂起裂压力远低于清水压裂,平均值仅为后者的60%;页岩丰富软弱层理面削弱最大主应力对主裂缝扩展的影响,导致沿层理面产生剪切裂缝;低黏度CO2的高渗滤导致孔隙压力升高,并降低基质缺陷及弱面处的有效应力,有利于裂缝尖端沿着试样内部缺陷薄弱区域扩展,从而形成粗糙裂隙表面。可见,CO2无水压裂技术适用于超低渗透性页岩气储层改造,研究结果可为水敏性陆相页岩气的现场压裂施工与参数优化提供支撑。  相似文献   

13.
二氧化碳封存技术研究进展   总被引:2,自引:0,他引:2  
CO2作为最重要的温室气体越来越受关注,而CCS技术因在大规模减少温室气体排放方面的潜力也受到广泛重视。在广泛搜集国内外有关CCS技术相关资料的基础上,详细介绍了最新的CCS技术现状,列出了国内外最新CCS工程案例,讨论了地质封存、CO2-EOR、CO2-ECBM技术的内涵及研究进展,对深部咸水层、枯竭油(气)田、玄武岩含水层、CO2-EOR及CO2-ECBM封存技术选型、CO2泄露、储存容量和可注入性、试验与模拟技术以及选址与风险评估等研究现状进行了讨论并指出了下一步的研究重点。最后,对中国的CCS技术发展进行了展望。  相似文献   

14.
为研究CO2在老油田地质封存中的赋存状态,采用室内实验的方法,研究了 CO2与地层流体、岩石的相互作用,并结合驱替实验结果明确了地质封存中CO2的赋存状态.研究表明:油水共存情况下,CO2主要溶解于原油中,在原油中的相对溶解量是水中相对溶解量的9.61倍;CO2溶解所形成弱酸的量和浓度对固化作用起决定作用,在含气饱和度...  相似文献   

15.
 为探索地球物理场中原地煤层气运移能力对煤层气储集和富集能力的影响,以地应力场、地温场中煤层气连续性方程、气体状态方程、吸附方程、渗流方程为基础,建立了应力、温度影响下的煤层气渗流控制方程。方程体现了地应力和地温对煤层气压力、含量、渗透率和孔隙率的影响,其中,应力和温度通过影响煤层气压力影响吸附量,通过影响煤层气压力和孔隙率影响游离量;温度还通过影响吸附常数b影响吸附量;不同的应力、温度组合条件下,渗透率的变化机制不同。通过Kaiser声发射原岩应力测试实验、不同温度下煤的甲烷等温吸附实验、不同温度及有效应力下煤体中甲烷渗流实验以及煤的孔隙率、工业分析等实验,研究应力、温度影响下的煤层气渗流特征。不同温度下煤的甲烷等温吸附实验表明,吸附常数a随温度变化不明显,b随温度升高而下降;不同温度、不同有效应力条件下煤的甲烷渗流实验表明,小有效应力条件下,煤体中甲烷渗透率随温度升高而升高;大有效应力条件下,渗透率随温度升高而下降。以实验数据和原始地质资料为基础,采用有限差分法,进行了地球物理场中原地煤层气渗流运移能力的一维、二维数值模拟。计算表明:研究区现今原地煤层气渗流运移导致的煤层气散失甚微,低渗煤层具有良好的储集和富集能力,但不利于后期开采,卸除地应力和升高温度是提高煤层气抽采率的有效途径。  相似文献   

16.
煤体吸附瓦斯膨胀变形效应的试验研究   总被引:5,自引:0,他引:5  
为了探讨煤体吸附瓦斯产生膨胀变形效应这一特有的力学行为,利用自行研发的含瓦斯煤岩细观力学试验系统,进行不同瓦斯压力下的吸附膨胀变形试验。试验结果表明:(1)同一煤样在不同瓦斯压力下随时间的变形曲线具有相同的变化规律,煤样的应变变化率随时间逐渐减小,直至一个相对稳定值;(2)煤样的吸附膨胀变形呈各向异性,垂直于层理方向和平行于层理方向的应变整体变化趋势呈现一致性,但由于煤体内部裂隙分布差异,垂直层理方向的变形值明显大于平行层理方向;(3)煤体瓦斯吸附量与体应变量呈现较好的线性关系,以此建立考虑温度、水分、灰分和各向异性等因素的吸附膨胀变形计算方程;(4)利用吸附变形应力与制约吸附变形量的线性关系,以及吸附变形量与瓦斯压力的关系得出吸附膨胀应力计算方法;(5)煤体的吸附膨胀变形具有不可逆性,且吸附气体压力越大,其残余变形值也越大。煤体的膨胀变形效应具有重要的工程应用价值,可作为煤层突出危险性测定的辅助指标,以及应用于煤层透气性的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号