首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。  相似文献   

2.
通过动态力学分析研究苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)/石油树脂共混物的高温阻尼性能。结果表明,SIS有两个独立的tantδ峰;聚苯乙烯(PS)硬段含量越大,SIS的高温tantδ峰值越大,粘流温度越高,高温阻尼性能越好。SIS/石油树脂共混物的有效阻尼温度范围和tantδ峰值较大,高温阻尼性能较SIS好;石油树脂软化点升高,共混物的阻尼温度范围增大,且向高温方向移动。SIS-A/石油树脂(P140)共混比为40/60时,共混物在57~109℃范围内的阻尼性能较好。加入PS或PS/云母可使共混物的阻尼温度范围进一步向高温方向偏移。  相似文献   

3.
采用乳液聚合法合成了具有橡胶结构特征的丙烯腈丁二烯苯乙烯共聚物(ABS),将其与苯乙烯丙烯腈共聚物(SAN)共混,制备了ABS/SAN共混物,并系统地研究了橡胶相结构特征的影响因素及其对共混物力学性能及其形变机理的影响。结果表明,随着聚丁二烯(PB)橡胶粒子粒径的增大,共混物的冲击强度提高,拉伸强度降低;随着橡胶粒子粒径的增大,共混物形变机理从单一的银纹向橡胶粒子空洞化诱发基体剪切屈服转变。  相似文献   

4.
由环氧化(苯乙烯-丁二烯-苯乙烯)三嵌段共聚物(SBS)与硫酸氢钠水溶液反应制备了新型含硫酸盐基的SBS离聚体,研究了离聚体的形态结构、力学性能、离聚体时SI玛/氯醇橡胶(CHR)共混物的增容作用以及离聚体/聚丙烯(PP)共混物的力学性能。结果表明:在透射电镜下硫酸铅基离聚体呈现黑色圆柱状或四方晶形离子微区,硬脂酸锌作为离子增塑剂能提高钠离聚体的力学性能;随着离子基含量的提高,离聚体的拉伸强度及扯断伸长率增加;少量离聚体可以提高SBS/CHR共混物的力学性能,减小共混物的吸煤油率;扫描电镜图片显示二者的相容性增加;离聚体/PP共混物在拉伸强度与组成的关系方面呈现协同效应,并且其耐甲苯性能提高。  相似文献   

5.
膨胀型阻燃剂阻燃PP/SBS/POE共混物的性能研究   总被引:4,自引:0,他引:4  
研究了聚磷酸胺类膨胀型阻燃剂(AP)和磷酸酯膨胀型阻燃剂(NP)的用量对聚丙烯(PP)/苯乙烯-丁二烯-苯乙烯共聚物(SBS)/乙烯-辛烯共聚物(POE)共混体系的力学性能、燃烧性能和遇水抗析出性能的影响。探讨了阻燃剂的析出机理,并从耐电压方面分析其在电线电缆领域应用的可行性。结果表明,NP具有更高的分解温度和残炭率。将AP与NP分别加入到PP/SBS/POE共混体系中,共混物的拉伸强度和断裂伸长率都降低,但阻燃性能提高。在相同添加量下,NP阻燃的共混物的拉伸强度和氧指数更高,而AP更能促进共混物成炭。AP和NP在热水浸泡过程中都会析出,析出过程是由表层向内部逐步析出的过程,析出量随着浸泡时间延长而增加。在相同的浸泡时间下,NP体系的析出量更小。浸泡后的共混物的力学性能和阻燃性能下降。  相似文献   

6.
研究了多官能团单体的用量、官能团数目以及辐射剂量对苯乙烯丁二烯共聚物(SBS)与低密度聚乙烯(PE-LD)共混物的强化辐射交联效应,测试了共混物的辐射交联程度、力学性能与形状记忆性能。结果表明,随辐射剂量的增加,SBS/PE-LD共混物的交联程度增加;多官能团单体的加入能够提高共混物的交联程度;相同辐射剂量时,官能团数目越多,交联程度越高;辐射剂量高于150 kGy时,多官能团单体的加入可以提高SBS/PE-LD共混物的拉伸强度;强化辐射交联SBS/PE LD共混物具有优异的形状记忆性能。  相似文献   

7.
《塑料科技》2019,(12):34-38
采用乳液聚合技术合成聚丁二烯胶乳,然后在聚丁二烯胶乳粒子上接枝苯乙烯和丙烯腈单体制备ABS粉料,通过熔融共混法制备了苯乙烯-丙烯腈/丙烯腈-丁二烯-苯乙烯(SAN/ABS)共混物。对共混物进行了力学性能测试,结果表明:随着橡胶含量的增加,共混物的断裂伸长率先上升后下降,冲击强度增大。采用转矩流变仪和扫描电镜(SEM)对共混物的加工流变性能和共混物的相形态进行了表征,结果表明:胶含量为25%时,加工流动性较好,橡胶粒子能较均匀地分散在基体中,能较好地改善体系的抗冲击性。  相似文献   

8.
介绍了近年来国内PVC共混改性的研究状况,重点阐述了PVC/丙烯腈-丁二烯-苯乙烯(ABS)、PVC/甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)、PVC/氯化聚乙烯(CPE)、PVC/乙烯-醋酸乙烯酯(EVA)等几种共混体系研究的最新进展。  相似文献   

9.
采用以乳液聚合的方法合成丙烯腈-丁二烯-苯乙烯共聚物(ABS)接枝粉料,将其与PVC、苯乙烯/丙烯腈共聚物(SAN)树脂熔融共混制备PVC/SAN/ABS共混物。恒定共混物中ABS含量,改变体系中SAN与PVC的比例从70.5/17.5至18/70。TEM分析表明,当共混物中SAN含量较多时,可以观察到银纹的存在;当共混物中PVC含量较多,可以观察到剪切屈服的发生;SEM分析发现,当共混物中PVC含量较多时,断裂表面出现了大量的空洞并伴随着基体的塑性流动;SAXS分析表明,当共混物中SAN的含量较多时,散射强度的增加是银纹的贡献能力增大的结果。  相似文献   

10.
以氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)作为丁苯橡胶(SBR)/聚丙烯(PP)热塑性硫化胶(TPV)的增容剂,研究增容剂对共混体系的力学性能、共混物硫化交联网络结构、熔融温度以及断面形貌的影响。结果表明,SEBS添加量为6份时,体系的综合力学性能最佳;SEBS的加入提高了有效共硫化程度。增加了体系的化学交联密度;随着SEBS用量的增加,TPV的熔融温度逐渐下降;扫描电镜图片显示SEBS能有效提高界面结合力,提高PP与SBR的相容性。  相似文献   

11.
The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions.  相似文献   

12.
辐照交联聚烯烃/NR热塑性弹性体发泡材料辐照效应的研究   总被引:2,自引:0,他引:2  
王亚珍  张丽叶  段景宽  杜涛 《塑料》2007,36(2):68-72
研究了辐射交联聚烯烃/NR热塑性弹性体发泡材料的辐照效应以及辐照对于泡沫材料性能的影响。凝胶含量的测试表明:发泡体系的交联度随辐照剂量的增加而逐渐增加,但是过大的辐照剂量(>60kGy)不利于辐射交联聚烯烃/NR热塑性弹性体泡沫材料的发泡;随着辐照剂量的增大,材料的表观密度和压缩性能增加。SEM研究表明:随辐照剂量的增加,材料的微观泡孔尺寸变小。DSC研究表明,辐照剂量的提高有利于混合材料耐热性能的提高。傅立叶红外光谱(IR)的研究表明,辐照剂量影响发泡材料的微观结构,辐照剂量的增大使材料内部发生降解反应。  相似文献   

13.
Electron-beam (EB)-initiated grafting of triallyl cyanurate (TAC) onto polyethylene (PE) has been carried out over a range of radiation dose (2–20 Mrad) and concentrations of TAC (0.5–3 parts by weight). The grafting level, as determined from IR spectroscopy, is maximum at a 10 Mrad radiation does using 1 part TAC. With increasing TAC level at a 15 Mrad dose, the grafting level is higher only after 1.5 parts TAC. The gel content increases with radiation dose in the initial stages. X-ray studies indicate two peaks at 10.6–10.8° and 11.7–11.9° and the corresponding interplaner distances of 4.15 and 3.80 Å. With increase in radiation dose or TAC level, the crystallinity decreases in the initial stage and then increases. It shows a decreasing trend again at higher radiation dose. The interplanar distance or the interchain distance of the modified polymer does not change. However, the crystallite size increases initially and then decreases. The tensile properties are relatively insensitive to the variation of radiation dose because of the interplay of various factors. The dielectric loss, tan δ, shows a maximum at a 10 Mrad dose and minimum at 5 and 15 Mrad due to changes of polarity and the carrier mobility. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
研究了辐照剂量对EPDM机械、电气、老化及吸水性能的影响。TMPTA在低剂量有强化交联作用。  相似文献   

15.
Isotactic polypropylene (PP) was preradiated by γ ray with different absorbed doses and subsequently blended with ethylene‐vinyl acetate (EVA) co‐polymer to prepare PP/EVA blends. The average molecular weight (Mn) of isotactic PP decreased with the increasing radiation absorbed dose, which indicated that high energy radiation of γ ray broke the isotactic long PP chains into shorter ones. The melt flow rate results evidenced that the processing ability of PP/EVA blends was continuously promoted with the increasing absorbed dose. The β crystal was obtained in the PP/EVA blends by the radiation method. The onset temperatures and peaks of crystallization of PP/EVA blends decreased slightly with the increasing radiation absorbed dose, while high energy radiation was inclined to enhance the crystallinity of PP/EVA blends. The Fourier transform infrared spectroscopy (FTIR) tests confirmed an interesting phenomenon that PP tended to move to the surface of the PP/EVA blends with the increasing radiation absorbed dose. Mechanical tests proved that the PP/EVA blends remained a comparative stable mechanical property under the absorbed dose of 30 kGy. The experimental results indicated that PP/EVA blend was a potential candidate for industrial applying. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45057.  相似文献   

16.
The effect of electron beam (E‐beam) radiation on a series of styrenic block copolymers (SBCs) was investigated. These SBCs included newly developed poly(styrene‐block‐isoprene/butadiene‐block‐styrene) (SIBS), poly(styrene‐block‐butadiene‐block‐styrene) (SBS), and poly(styrene‐block‐isoprene‐block‐styrene) (SIS). The tensile properties, stress relaxation, molecular weight, and dynamical mechanical properties were studied. Generally, the crosslink density and tensile moduli of SBCs increased with increasing of E‐beam radiation dose. The tensile strength of SIBS and SIS was shown to first decrease at lower E‐beam radiation dose (<120 kGy) and then increase at higher radiation dose (>190 kGy). The tensile strength of SBS was significantly decreased at high E‐beam radiation dose (>190 kGy). This was attributed to the differences between entanglement before E‐beam radiation and the homogeneity of the crosslink network after exposure. POLYM. ENG. SCI., 54:2979–2988, 2014. © 2014 Society of Plastics Engineers  相似文献   

17.
Hydrogel is prepared from a poly(vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) blend solution by gamma radiation with a 60Co λ source at room temperature. Properties of the prepared hydrogel, such as gel fraction, gel strength swelling ratio, equilibrium water content, and water absorption in room temperature, were investigated. Blending hydrogel with PVP and PVA obviously increased the gel strength and decreased the swelling ratio of hydrogel. It was observed that the gel fraction increased while the swelling ratio and water content decreased with increased radiation dose, but gel strength increased up to a certain radiation dose and then decreased. The percentage of water absorption at room temperature increased with time but after a certain time it became steady and decreased with radiation dose.  相似文献   

18.
BACKGROUND: Poly(butylene adipate‐co‐terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point. RESULTS: PBAT was treated using γ‐radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby–Pinner equation. The results showed that PBAT is a radiation‐crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby–Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (Tm) and the heat of fusion (ΔHm) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in Tm and ΔHm. The glass transition temperature of irradiated PBAT increased with increasing radiation dose. The weight loss of control and irradiated PBAT resulting from thermal degradation was a one‐step process. Moreover, the tensile strength and elongation at break decreased with an increase in radiation dose. However, the Young's modulus and stress at yield were not greatly affected by γ‐radiation. CONCLUSION: PBAT can be crosslinked using γ‐radiation. The crosslinking efficiency is relatively low. The thermal and mechanical properties of PBAT are affected by γ‐radiation. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Hydrogels were prepared by electron beam (EB) radiation to the aqueous solutions of poly(sodium acrylate) in the presence of potassium and ammonium peroxodisulfates. The effects of EB radiation dose, as well as polymer, and initiator concentrations on the formation of gels, were investigated. On the basis of the storage modulus, loss modulus, and complex viscosity of the isolated gels determined by rheological measurement, the relationship between the radiation conditions and the rheological properties of the gels was discussed. Furthermore, hydrogels with a gradient crosslinking structure in a depth direction were synthesized by controlling EB radiation dose.  相似文献   

20.
Polymer‐based composites find use in many nuclear and space application for their ease of fabrication, tailor made properties and light weight. Certain polymers like PTFE, unfilled polyesters and polyamides are prone to degradation in presence of high energy radiation while polymers like epoxies, polyimides, and poly‐ether ether ketone have good stability to ionizing radiation. Incorporation of fillers like carbon nanotubes (CNTs) is likely to improve the radiation resistance of the polymers. In this work, polysulfone (PSU)‐based nanocomposites were fabricated using multiwalled carbon nanotube (MWCNT) by solution mixing process. The morphology of the PSU/ MWCNT nanocomposites films were studied using Field Emission Scanning Electron Microscopy (FESEM). The prepared films were subjected to γ radiation in an argon environment (to avoid the effect of air/oxygen). Different techniques were used to understand the radiation‐induced changes. Gel Permeation Chromatography (GPC) traces of neat PSU before and after exposure to radiation shows a decrease in molecular weight. Infrared spectroscopy shows changes in chemical structure. Differential Scanning Calorimetry (DSC) thermograms reveal dose‐related changes. For neat PSU, a decrease in Tg was observed with increase in dose. For PSU/ MWCNT nanocomposites, the increase in MWCNT content and dose (up to 1.5 MGy) increased the Tg. Thermo Gravimetric Analysis (TGA) showed a marginal decrease in thermal stability for pristine PSU as well as PSU/MWCNT nanocomposites with irradiation. Tensile strength increased with increasing MWCNT content but decreased with dose. Elongation at break decreased with MWCNT content as well as radiation dose. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号