首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
Electromechanical coupling mechanisms in piezoelectric bending actuators are discussed in this paper based on the constitutive equations of cantilever bimorph and unimorph actuators. Three actuator characteristic parameters, (e.g., electromechanical coupling coefficient, maximum energy transmission coefficient, and maximum mechanical output energy) are discussed for cantilever bimorph and unimorph actuators. In the case of the bimorph actuator, if the effect of the bonding layer is negligible, these parameters are directly related to the transverse coupling factor lest. In the case of the unimorph actuator, these parameters also depend on the Young's modulus and the thickness of the elastic layer. Maximum values for these parameters can be obtained by choosing proper thickness ratio and Young's modulus ratio of elastic and piezoelectric layers. Calculation results on four unimorph actuators indicate that the use of stiffer elastic material is preferred to increase electromechanical coupling and output mechanical energy in unimorph actuators.  相似文献   

2.
Micro actuators are an irreplaceable part of motion control in miniaturized systems and are intended to have a high range of deformation, high accuracy, large force, and quick response. In this article, an analytical model for a hybrid thermopiezoelectric micro actuator is developed in which a double lead-zirconnate-titanate piezoceramic (PZT) beam structure consisting of two arms with different lengths are used. Governing differential equation of motion and electrical field are derived and solved. Out of parametric studies it was observed that, under application of temperature and voltage gradients, the deflection of the actuator shows different trends depending on the geometry of the micro actuator and also type of PZT material.  相似文献   

3.
Hysteretic behavior is an important consideration for smart electroactive polymer actuators in a wide variety of nano/micro-scale applications. We prepared an electroactive polymer actuator in the form of a microfiber, based on single-wall carbon nanotubes and polyaniline, and investigated the hysteretic characteristics of the actuator under electrical potential switching in a basic electrolyte solution. For actuation experiments, we measured the variation of the length of the carbon-nanotube-based electroactive polymer actuator, using an Aurora Scientific Inc. 300B Series muscle lever arm system, while electrical potentials ranging from 0.2 V to 0.65 V were applied. Based on the classical Preisach hysteresis model, we presented and validated a numerical model that described the hysteretic behavior of the carbon-nanotube-based electroactive polymer actuator. Inverse hysteretic behavior was also simulated using the model to demonstrate its capability to predict an input from a desired output. This numerical model of hysteresis could be an effective approach to micro-scale control of carbon-nanotube-based electroactive polymer actuators in potential applications.  相似文献   

4.
This study describes a design feature for variable-airgap, cylindrical, linear variable reluctance actuators, which enhances their force capability at large airgaps. These features enable the actuators? force?displacement characteristics to be tailored to the requirements of a particular application. The method presented is based on incorporating a series of circular grooves into the stator pole faces and corresponding projections into the armature. The utility of these features is demonstrated by means of a design study on an actuator with a rated force of 1 kN over a stroke of 3 mm. The findings from the design study are validated by experimental measurements.  相似文献   

5.
The first hygroscopically tunable cloth actuator is realized via impregnation of a commercial cloth template by a three dimensionally (3D) nanoporous polymer/carbon nanotube hybrid network. The nanoporous hybrid guarantees diffusion of water into the cloth actuator and amplifies the deformation scale. The cloth actuators are mechanically stable with high tensile strength. Because the commercial cotton cloth is inexpensive, such actuators capable of complex motions can be produced in a large size and scale for a wide variety of utilities (e.g. electric generators and “smart” materials).  相似文献   

6.
轻质楼板系统易受居住者步行、跳舞和有氧运动之类活动激励产生人体不适的振动。如何使用多个激励器、传感器即多输入多输出控制策略抑制楼板振动是一个新挑战,也是近年来国内外研究热点。本文建立起一个新的适于楼板振动控制的多输入多输出主动优化控制策略与算法,可同时优化确认激励器/传感器对的放置位置与每个通道的反馈增益;提出一个新颖的综合性评价性能指标PI,不仅包含楼板系统振动能量,而且包含输入的控制能量,对该指标最小化,不仅实现系统振动能量的最小化,而且实现输入能量的最小化,这将带来激励器经济可行的实现。模拟计算结果表明,提出的新控制策略及其算法能十分有效、快速地抑制楼板系统振动响应。  相似文献   

7.
An approach for designing a structure and its control system for vibration suppression is presented. The control system is based on the Linear Quadratic Gaussian (LQG) and is modified to allow bounds on the actuators forces to simulate real actuators. The simultaneous design of the structure and control problem is formulated as a nonlinear optimization problem. The system is designed for minimum weight where the weight includes both the weight of the structure and the weight of the actuators. The weight of an actuator is assumed to be proportional to the bound on the maximum force that it can supply. The design variables include the cross-sectional areas of the structural members and the bounds on the actuator forces. The constraints are imposed on the closed loop frequency distribution and the time to reduce the energy of vibration to a small portion of the initial vibrational energy of the system. The structure is analyzed using a finite element approach. For illustration of the design approach, a truss structure idealized with rod elements is used.  相似文献   

8.
Vanadium oxides, such as V2O5, are promising for lithium-ion batteries, catalysis, electrochromic devices and sensors. Vanadium oxides were proposed more than a decade ago for another redox-dependent application: the direct conversion of electrical energy to mechanical energy in actuators (artificial muscles). Although related conducting polymer and carbon nanotube actuators have been demonstrated, electromechanical actuators based on vanadium oxides have not be realized. V2O5 nanofibres and nanotubes provide the potential advantages of low-cost synthesis by sol-gel routes and high charging capacity and long cycle life. Here, we demonstrate electromechanical actuation for obtained high modulus V2O5 sheets comprising entangled V2O5 nanofibres. The high surface area of these V2O5 sheets facilitates electrochemical charge injection and intercalation that causes the electromechanical actuation. We show that the V2O5 sheets provide high Young's modulus, high actuator-generated stress, and high actuator stroke at low applied voltage.  相似文献   

9.
A simple two-switch circuit for driving piezoelectric actuators with unipolar quasisquare waves is presented. The circuit provides for recovery of the energy stored on the actuator capacitance back to the primary power supply when the actuator is de-energized.  相似文献   

10.
Li J  Ma W  Song L  Niu Z  Cai L  Zeng Q  Zhang X  Dong H  Zhao D  Zhou W  Xie S 《Nano letters》2011,11(11):4636-4641
Here we report a novel single-walled carbon nanotube (SWNT) based bimorph electromechanical actuator, which consists of unique as-grown SWNT films as double electrode layers separated by a chitosan electrolyte layer consisting of an ionic liquid. By taking advantage of the special hierarchical structure and the outstanding electrical and mechanical properties of the SWNT film electrodes, our actuators show orders-of-magnitude improvements in many aspects compared to previous ionic electroactive polymer (i-EAP) actuators, including superfast response (19 ms), quite wide available frequency range (dozens to hundreds of Hz), incredible large stress generating rate (1080 MPa/s), and ultrahigh mechanical output power density (244 W/kg). These remarkable achievements together with their facile fabrication, low driving voltage, flexibility, and long durability enable the SWNT-based actuators many applications such as artificial muscles for biomimetic flying insects or robots and flexible deployable reflectors.  相似文献   

11.
This work presents a new kind of shape memory alloy (SMA) based composite actuators that can retain its shape in multiple configurations without continuous energy consumption by changing locally between a high-stiffness and a low-stiffness state. This was accomplished by embedding fusible alloy (FA) material, Ni-chrome (Ni–Cr) wires and SMA wires in a smart soft composite (SSC) structure. The soft morphing capability of SMA-based SSC structures allows the actuator to produce a smooth continuous deformation. The stiffness variation of the actuator was accomplished by melting the embedded FA structures using Ni–Cr wires embedded in the FA structure. First, the design and manufacturing method of the actuator are described. Then, the stiffness of the structure in the low and high-stiffness states of the actuator were measured for different applied currents and heating durations of the FA structure and results show that the highest stiffness of the actuator is more than eight times that of its lowest stiffness. The different shape retention capability of the actuator were tested using actuators with one or two segments and these were compared with a numerical model.  相似文献   

12.
In this paper, an efficient charge recovery method for driving piezoelectric actuators with low frequency square waves in low-power applications such as mobile microrobots is investigated. Efficiency issues related to periodic mechanical work of the actuators and the relationship among the driving electronics efficiency, the piezoelectric coupling factor, and the actuator energy transmission coefficient are discussed. The proposed charge recovery method exploiting the energy transfer between an inductor and a general capacitive load is compared with existing techniques that lead to inherent inefficiencies. A charge recovery method is then applied to piezoelectric actuators, especially to bimorph ones. Unitary efficiency can be obtained theoretically for purely capacitive loads while intrinsic losses such as hysteresis necessarily lower the efficiency. In order to show the validity of the method, a prototype driving electronics consisting of an extended H-bridge is constructed and tested by experiments and simulations. Preliminary results show that 75% of charge (i.e., more than 56% of energy) can be recovered for bending actuators such as bimorphs without any component optimization at low fields.  相似文献   

13.
本文提出利用镧改性锆钛酸铅(PLZT)的光电效应,将PLZT作为电动势源来驱动压电作动器,从而实现光控板壳结构的振动控制。基于光控压电等效电学模型建立了光控压电混合驱动的数学模型,并进行了实验验证。为了实现光控悬臂梁的独立模态控制,针对悬臂梁结构,设计了正交模态传感器/作动器表面电极形状函数。提出PLZT与压电作动器正/反接控制的激励策略,并结合速度反馈定光强控制的控制算法,利用Newmark-β法对不同光照强度下悬臂梁的动态响应进行了数值仿真分析。分析结果证明了本文所设计的模态传感器/作动器及针对光控压电混合驱动提出的控制策略的正确性。  相似文献   

14.
X. D. Wang  G. L. Huang 《Acta Mechanica》2006,183(3-4):155-176
Summary Piezoelectric actuators can be used to generate high-frequency elastic waves for damage identification of materials. This paper provides a comprehensive theoretical study of the electromechanical behavior of surface-bonded or embedded piezoelectric actuators under inplane electric fields. A modified one-dimensional actuator model is introduced, from which arbitrarily distributed electric fields along the actuator can be considered. The model is used to simulate the dynamic load transfer between the actuator and the host medium and the resulting elastic wave propagation by using the integral transform method and solving the resulting singular integral equations. Of particular interest is the generated waveform away from the actuator under different electric fields. An asymptotic analysis is conducted to obtain the far-field solution of the wave field. The property of the resulting waveform is studied, and the simulation shows that the direction of wave propagation can be adjusted by controlling the phase distribution of the applied electric field along the actuator.  相似文献   

15.
The combination of force and flexibility is at the core of biomechanics and enables virtually all body movements in living organisms. In sharp contrast, presently used machines are based on rigid, linear (cylinders) or circular (rotator in an electrical engine) geometries. As a potential bioinspired alternative, magnetic elastomers can be realized through dispersion of micro‐ or nanoparticles in polymer matrices and have attracted significant interest as soft actuators in artificial organs, implants, and devices for controlled drug delivery. At present, magnetic particle loss and limited actuator strength have restricted the use of such materials to niche applications. We describe the direct incorporation of metal nanoparticles into the backbone of a hydrogel and application as an ultra‐flexible, yet strong magnetic actuator. Covalent bonding of the particles prevents metal loss or leaching. Since metals have a far higher saturation magnetization and higher density than oxides, the resulting increased force/volume ratio afforded significantly stronger magnetic actuators with high mechanical stability, elasticity, and shape memory effect.  相似文献   

16.
Conjugated polymers are promising actuation materials for bio/micromanipulation systems, biomimetic robots, and biomedical devices. For these applications, it is highly desirable to have predictive models available for feasibility study and design optimization. In this paper a scalable model is presented for trilayer conjugated polymer actuators based on J. Madden's diffusive-elastic-metal model. The proposed model characterizes actuation behaviors in terms of intrinsic material parameters and actuator dimensions. Experiments are conducted on polypyrrole actuators of different dimensions to validate the developed scaling laws for quasi-static force and displacement output, electrical admittance, and dynamic displacement response.  相似文献   

17.
Bio‐inspired actuation materials, also called artificial muscles, have attracted great attention in recent decades for their potential application in intelligent robots, biomedical devices, and micro‐electro‐mechanical systems. Among them, ionic polymer metal composite (IPMC) actuator has been intensively studied for their impressive high‐strain under low voltage stimulation and air‐working capability. A typical IPMC actuator is composed of one ion‐conductive electrolyte membrane laminated by two electron‐conductive metal electrode membranes, which can bend back and forth due to the electrode expansion and contraction induced by ion motion under alternating applied voltage. As its actuation performance is mainly dominated by electrochemical and electromechanical process of the electrode layer, the electrode material and structure become to be more crucial to higher performance. The recent discovery of one dimensional carbon nanotube and two dimensional graphene has created a revolution in functional nanomaterials. Their unique structures render them intriguing electrical and mechanical properties, which makes them ideal flexible electrode materials for IPMC actuators in stead of conventional metal electrodes. Currently although the detailed effect caused by those carbon nanomaterial electrodes is not very clear, the presented outstanding actuation performance gives us tremendous motivation to meet the challenge in understanding the mechanism and thus developing more advanced actuator materials. Therefore, in this review IPMC actuators prepared with different kinds of carbon nanomaterials based electrodes or electrolytes are addressed. Key parameters which may generate important influence on actuation process are discussed in order to shed light on possible future research and application of the novel carbon nanomateials based bio‐inspired electrochemical actuators.  相似文献   

18.
A method for optimal positioning of piezoelectric actuators and sensors on a flexible structure is presented. First, a two-dimensional (2-D) model of a piezoelectric actuator bonded to a plate is obtained. Then, a Ritz formulation is used to find a state model of the system in view of its control. To define an optimal positioning strategy, an energy based approach is developed. This leads quite naturally to the study of controllability and observability properties of the overall dynamical model. A new criterion based on energy assessment is proposed to locate actuators and sensors  相似文献   

19.
Dielectric elastomer actuators that can directly turn electrical energy into mechanical energy belong to the group of electroactive polymers. This type of electroelastic material exhibits large displacement characteristics and is able to change its mechanical behavior in response to the application of an electric field. Dielectric actuators are made out of elastomers which in general show viscoelastic behavior. To take this time dependent effect into account, the deformation gradient is multiplicatively decomposed. The paper is focused on the numerical modeling of soft dielectric elastomers. The theoretical foundation and the consistent finite element implementation is outlined based on the laws of electricity and elasticity. Furthermore, numerical examples of the nonlinear visco‐electroelasticity model are shown. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Bioinspired methods allowing artificial actuators to perform controllably are potentially important for various principles and may offer fundamental insight into chemistry and engineering. To date, the main challenges persist regarding the achievement of large deformation in fast response‐time and potential‐engineering applications in which electrode materials and structures limit ion diffusion and accumulation processes. Herein, a novel electrochemical actuator is developed that presents both higher electromechanical performances and biomimetic applications based on hierachically structured covalently bridged black phosphorous/carbon nanotubes. The new actuator demonstrates astonishing actuation properties, including low power consumption/strain (0.04 W cm?2 %?1), a large peak‐to‐peak strain (1.67%), a controlled frequency response (0.1–20 Hz), faster strain and stress rates (11.57% s?1; 28.48 MPa s?1), high power (29.11 kW m?3), and energy (8.48 kJ m?3) densities, and excellent cycling stability (500 000 cycles). More importantly, bioinspired applications such as artificial‐claw, wings‐vibrating, bionic‐flower, and hand actuators have been realized. The key to high performances stems from hierachically structured materials with an ordered lamellar structure, large redox activity, and electrochemical capacitance (321.4 F g?1) for ions with smooth diffusion and flooding accommodation, which will guide substantial progress of next‐generation electrochemical actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号