首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvey JE 《Applied optics》1995,34(19):3715-3726
Residual surface roughness over the entire range of relevant spatial frequencies must be specified and controlled in many high-performance optical systems. This is particularly true for enhanced reflectance multilayers if both high reflectance and high spatial resolution are desired. If we assume that the interfaces making up a multilayer coating are uncorrelated at high spatial frequencies (microroughness) and perfectly correlated at low spatial and midspatial frequencies, then the multilayer can be thought of as a surface power spectral density (PSD) filter function. Multilayer coatings thus behave as a low-pass spatial frequency filter acting on the substrate PSD, with the exact location and shape of this cutoff being material and process dependent. This concept allows us to apply conventional linear systems techniques to the evaluation of image quality and to the derivation of optical fabrication tolerances for applications utilizing enhanced reflectance x-ray multilayers.  相似文献   

2.
An optical filter that has an ideal response for removing aliasing noise from a sampled imaging system is described. The all-phase filter uses complementary Golay codes to achieve an optimum low-pass transfer function with no sidelobes. A computer model shows that the optical system has the expected performance in the ideal case, but degrades somewhat with wavelength variations and image aberrations. An experimental demonstration of the filter shows the optical transfer function performance and the response to imagery with a sampled detector.  相似文献   

3.
We show that optimal regions of support for correlation filters in the frequency domain can be approximated by relatively small convolution kernels in the spatial domain. We present an optimal approach for generating regions of support, as well as a fast nonoptimal approach for conventional optical correlators. Because the convolution kernels are similar to low-pass filters, the resulting input image to a correlator is always positive valued. We show that the performance of the convolution-based approach is comparable with the optimal frequency-domain approach. An important advantage of our method is that it can be implemented on low-cost arithmetic frame grabbers that can perform convolution with small kernels in real time. In addition, our method can be used in conjunction with a filter spatial light modulator that cannot produce a zero state.  相似文献   

4.
Single-lens single-image incoherent passive-ranging systems   总被引:1,自引:0,他引:1  
Dowski ER  Cathey WT 《Applied optics》1994,33(29):6762-6773
We introduce a new system for single-lens single-image incoherent passive ranging. The only a priori object information this system requires is that the objects to be ranged must possess a low-pass spatial frequency spectrum. Physically, this system for passive ranging is a standard optical imaging system that is customized with a special-purpose optical mask or filter. Analytically, this optical mask customizes the transfer function of the optical system in such a way that objects form images that contain range-dependent information. This range-dependent information lies in the spatial spectrum nulls or zeros of the image.  相似文献   

5.
A multivariate hyperspectral imaging (MHI) instrument has been designed and constructed to achieve greatly increased Raman imaging speeds by utilizing a compressive spectral detection strategy. The instrument may be viewed as a generalized spectrometer, which can function either as a conventional monochromator or in a wide variety of other hyperspectral modalities. The MHI utilizes a spatial light modulator (SLM) to produce programmable optical filters to rapidly detect and map particular sample components. A sequence of Hadamard-transform or random filter functions may be used to regenerate full Raman spectra. Compressive detection is achieved either using multivariate signal processing filter functions or the actual component spectra. Compressive detection is shown to be capable of achieving sampling speeds exceeding 1 ms per image pixel and the collection of chemical images in less than a minute.  相似文献   

6.
聚束式合成孔径雷达是一种高性能遥感工具,它可以获得一块区域内高分辨率的微波遥感图像.但是如何处理它的数据却是一大难题,原因在于它总的方位向带宽通常远远大于方位向采样率(PRF),这样会产生严重的方位向频谱混叠效应.所以我们无法直接应用传统的条带式处理技术来对聚束式数据进行处理.本文讨论了一种将条带式数据处理的聚焦成像技术应用到处理聚束式数据中的算法.它的核心步骤是预滤波,可以实现方位向数据和一个参数可调的线性调频信号的卷积.经过这个滤波器后,方位向数据的频谱混叠得到了补偿,再应用稍加修改的传统条带式处理算法就可以获得良好的聚焦图像.  相似文献   

7.
Forward looking infrared (FLIR) detector arrays generally produce spatially undersampled images because the FLIR arrays cannot be made dense enough to yield a sufficiently high spatial sampling frequency. Multi-frame techniques, such as microscanning, are an effective means of reducing aliasing and increasing resolution in images produced by staring imaging systems. These techniques involve interlacing a set of image frames that have been shifted with respect to each other during acquisition. The FLIR system is mounted on a moving platform, such as an aircraft, and the vibrations associated with the platform are used to generate the shifts. Since a fixed number of image frames is required, and the shifts are random, the acquired frames will not fall on a uniformly spaced grid. Furthermore, some of the acquired frames may have almost similar shifts thus making them unusable for high-resolution image reconstruction. In this paper, we utilize a gradient-based registration algorithm to estimate the shifts between the acquired frames and then use a weighted nearest-neighbor approach for placing the frames onto a uniform grid to form a final high-resolution image. Blurring by the detector and optics of the imaging system limits the increase in image resolution when microscanning is attempted at sub-pixel movements of less than half the detector width. We resolve this difficulty by the application of the Wiener filter, designed using the modulation transfer function (MTF) of the imaging system, to the high-resolution image. Simulation and experimental results are presented to verify the effectiveness of the proposed technique. The techniques proposed herein are significantly faster than alternate techniques, and are found to be especially suitable for real-time applications  相似文献   

8.
In this paper, we address the geometrical resolution limitation of an imaging sensor caused by the size of its pixels yielding insufficient spatial sampling of the image. The spatial blurring that is caused due to inadequate sampling can be resolved by placing a two-dimensional binary random mask in an intermediate image plane and shifting it along one direction while keeping the sensor as well as all other optical components fixed. Out of the set of images that are captured, a high resolution image can be decoded. In addition, this approach allows improved robustness to spatial noise.  相似文献   

9.
A comparison of the ideal integrator and low-pass filters has been made. Many experimenters use an integrator to filter out high-frequency noise from their data, whereas a properly designed low-pass filter will remove more noise and distort the signal less. Viewed as a low-pass filter, the integrator is superior to the RC filter but inferior to higher order filters. An integrating digital voltmeter (DVM) integrates and samples the input signal. If the signal has a varying component and is mixed with noise, it would be more accurate to use a low-pass filter followed by a sampler, than the integrating DVM.  相似文献   

10.
In this paper, an adaptive frequency sampling technique is applied to the moment method for the analysis of microstrip filters and patch antennae. The analysis of microstrip low-pass filter and patch antenna in the frequency domain has been usually done with uniform frequency step. An adaptive frequency sampling technique can significantly reduce the time taken for the analysis through the frequency range without reducing the accuracy of the results.  相似文献   

11.
Takaki Y  Ishida K  Kume Y  Ohzu H 《Applied optics》1996,35(17):3134-3140
Incoherent pattern detection by a simple imaging system using a liquid-crystal active lens is proposed. The imaging system works as a spatial filtering system with a rewritable phase-only filter. We found that, in the incoherent matched filtering system, a conventional phase-only filter has a higher optical efficiency but a lower pattern discrimination than a complex filter. To improve the pattern discrimination ability, we optimized the phase-only filter by using simulated annealing and a genetic algorithm. We designed phase-only filters that have discrimination ability comparable with that in a complex filter. The performance of optimized phase-only filters is experimentally demonstrated.  相似文献   

12.
A new approach to ultrasound imaging with coded-excitation is presented. The imaging is performed by reconstruction of the scatterer strength on an assumed grid covering the region of interest (ROI). Our formulation is based on an assumed discretized signal model which represents the received sampled data vector as a superposition of impulse responses of all scatterers in the ROI. The reconstruction operator is derived from the pseudo-inverse of the linear operator (system matrix) that produces the received data vector. The singular value decomposition (SVD) method with appropriate regularization techniques is used for obtaining a robust realization of the pseudo-inverse. Under simplifying (but realistic) assumptions, the pseudo-inverse operator (PIO) can be implemented using a bank of transversal filters with each filter designed to extract echoes from a specified image line. This approach allows for the simultaneous acquisition of a large number of image lines. This could be useful in increasing frame rates for two-dimensional imaging systems or allowing for real-time implementation of three-dimensional imaging systems. When compared to the matched filtering approach to similar coded-excitation systems, our approach eliminates correlation artifacts that are known to plague such systems. Furthermore, the lateral resolution of the new system can exceed the diffraction limit imposed on conventional imaging systems utilizing delay-and-sum beamformers. The range resolution is compared to that of conventional pulse-echo systems with resolution enhancement (our PIO behaves as a pseudo-inverse Wiener filter in the range direction). Both simulation and experimental verification of these statements are given  相似文献   

13.
Dynamically focused and steered high frequency ultrasound imaging systems require arrays with fine element spacing, wide bandwidths, and large apertures. However, these characteristics are difficult to achieve at frequencies greater than 30 MHz using conventional array construction methods. Optical schemes offer a solution. Focused laser beams incident on a suitable surface can generate and detect acoustic radiation. Precisely controlling the position and size of the beams defines points of transmission and detection, making it possible for pulse-echo image formation by synthetic aperture methods. An optical detection array was built, relying on a conventional piezoelectric transducer as an ultrasound source. The detection system, with near optimal resolution over a wide depth of field, demonstrates the potential for high frequency array implementation using optical techniques. A possible application is in pathology, where 2-D or 3-D fine resolution pulse-echo imaging can be performed in situ without the need for biopsies.  相似文献   

14.
Shi J  Reichenbach SE  Howe JD 《Applied optics》2006,45(6):1203-1214
Two computationally efficient methods for superresolution reconstruction and restoration of microscanning imaging systems are presented. Microscanning creates multiple low-resolution images with slightly different sample-scene phase shifts. The digital processing methods developed here combine the low-resolution images to produce an image with higher pixel resolution (i.e., superresolution) and higher fidelity. The methods implement reconstruction to increase resolution and restoration to improve fidelity in one-pass convolution with a small kernel. One method uses a small-kernel Wiener filter and the other method uses a parametric cubic convolution filter. Both methods are based on an end-to-end, continuous-discrete-continuous microscanning imaging system model. Because the filters are constrained to small spatial kernels they can be efficiently applied by convolution and are amenable to adaptive processing and to parallel processing. Experimental results with simulated imaging and with real microscanned images indicate that the small-kernel methods efficiently and effectively increase resolution and fidelity.  相似文献   

15.
The linearity of an efficient polar transmitter architecture, with a 1 bit oversampled delta?sigma (DS) modulating the envelope signal, depends, to a high degree, on low-pass envelope filtering. This filter is compulsory to attenuate the DS quantisation noise. A high cut-off frequency results in more noise being included. In contrast, using a filter with a low cut-off frequency results in attenuation of the information content of the envelope signal. Either way, the result is unwanted spectral regrowth. By pre-emphasising the envelope signal, the filter?s attenuation of the information is mitigated. The pre-emphasis is implemented by a digital pseudo-derivative high-pass filter, with inverse magnitude characteristics of the analogue low-pass filter, within a limited interest band. Consequently, the low-pass filter can be designed with a lower cut-off frequency to attenuate more of the DS modulator noise, and the modulator can switch at lower frequencies. With this technique, the WLAN output spectrum, at the critical 30 MHz offset corner frequency, is improved by 12.5 dB, considering a second order DS sampling at 1.28 GHz. The technique was verified with an experimental setup and the behaviour agrees well with simulations.  相似文献   

16.
Over the last few decades, dynamic focusing based on digital receive beamforming (DRBF) has led to significant improvements in image quality. However, it is computationally very demanding due to its requirement for multiple lowpass filters (e.g., a complex filter for each receive channel in quadrature demodulation-based phase rotation beamformers (QD-PRBF)). We recently developed a novel phase rotation beamformer with reduced complexity, which can lower: 1) the number of lowpass filters using 2-stage demodulation (TSD) and 2) the number of beamforming points using adap tive field-of-view (AFOV) imaging. In TSD, dynamic focusing is performed on the mixed signals, while sampling frequency of the beamformed signal (i.e., beamforming frequency) is adjusted based on the displayed field-of-view (FOV) size in AFOV imaging. In this paper, the image quality of the developed beamformer (i.e., TSD-AFOV-PRBF) has been quantitatively evaluated using phantom and in vivo data. From the phantom study, it was found that TSD-AFOV-PRBF with only 1024 beamforming points provides comparable image quality to QD-PRBF. We obtained a median contrast resolution (CR) degradation of 7.6% for the FOV size of 160 mm. Image quality steadily improves with FOV size reduction (e.g., 2.3% CR degradation at 85 mm). Similar results were also obtained from an in vivo study. Thus, TSD-AFOV-PRBF could provide comparable image quality to conventional beamformers at considerably reduced computational cost.  相似文献   

17.
Ahn TJ  Lee JY  Kim DY 《Applied optics》2005,44(35):7630-7634
A compensation technique for reducing the effect of nonlinear optical frequency swept in an optical frequency-domain reflectometer (OFDR) is proposed. The instantaneous sweep optical frequency of an OFDR laser source is directly obtained by analysis of the interference signal from an auxiliary interferometer with a Hilbert transformation. Beating OFDR data from a main interferometer are regenerated with respect to the measured instantaneous optical frequency. We show that this technique dramatically improves the spatial resolution of a conventional OFDR and can be applied to an optical frequency-domain medical imaging system to eliminate the problem of a nonlinear frequency sweep effect.  相似文献   

18.
李晟  王博文  管海涛  梁坤瑶  胡岩  邹燕  张许  陈钱  左超 《光电工程》2023,50(10):230090-1-230090-27

传统光学成像实质上是目标场景的光强信号在空间维度上的直接均匀采样记录与再现的过程。因此,其成像分辨率与信息量不可避免地受到光学衍射极限、成像系统空间带宽积等若干物理条件制约。如何突破这些物理制约,获得更高分辨率、更宽广的图像信息,一直是该领域的永恒课题。计算光学成像通过前端光学调控与后端信号处理相结合,为突破成像系统的衍射极限限制,实现超分辨成像提供了新思路。本文综述了基于计算光学合成孔径成像实现成像分辨率的提升以及空间带宽积拓展的相关研究工作,主要包括基于相干主动合成孔径成像与非相干被动合成孔径成像的基础理论及关键技术。本文进一步揭示了当前“非相干、无源被动、超衍射极限”成像的迫切需求及其现阶段存在的瓶颈问题,并展望了今后的研究方向以及解决这些问题可能的技术途径。

  相似文献   

19.
郑羽  李刚  吴开杰  张泰石  林凌  刘晶晶 《光电工程》2007,34(10):73-77,107
为了提高复杂多层样品层析图像的分辨率,构建了复谱频域光学相干层析成像(CSOCT)系统.由于其在低亮度和高速成像方面相对于时域OCT具有更高的灵敏度,因此在光学相干层析成像系统中具有重要的作用.本文对测试样品二层盖波片进行成像实验,基于光学相干层析基本理论,采用五帧相移算法,最终获得测试样品的复谱频域OCT图像.实验结果表明,该系统可以消除谱频域OCT图像中的寄生项和镜像,改善和提高层析图像的分辨率.  相似文献   

20.
The goal of this work is to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality. The method takes into account the dynamic range of the image detector, the detection of high and low contrast structures, the visualisation of the images and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualisation process in the image quality assessment. A mathematical model observer (non-prewhitening matched filter), that calculates the detectability of high and low contrast structures using spatial resolution, noise and contrast, was used to compare the two technologies. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. The method of using a test object with a large tissue composition range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimise the process of radiographic reading of soft copy images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号