首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

2.
针对田野铁矿选矿厂综合尾矿(150 t/h、铁品位约14%)金属流失较严重的问题,进行了回收试验。试验采用永磁强磁选预富集、弱磁选—磨矿—弱磁选—反浮选流程回收强磁性矿物,可获得3.56t/h铁品位64.61%合格铁精矿;采用高梯度强磁选—磨矿—高梯度强磁选—反浮选流程回收弱磁性矿物,可获得1.27 t/h铁品位55.14%的铁精矿。每年从尾矿可获得铁品位62.15%的混合精矿约3.6万t,经济效益非常可观。  相似文献   

3.
针对国外某铁矿石晶体嵌布粒度极细及难磨易选的性质特点,对该矿石进行了阶段磨矿—弱磁选—反浮选得精—中矿再磨—弱磁选工艺流程试验。试验结果表明:当2段磨矿细度为-0.076 mm 90%时,弱磁精选精矿采用反浮选可提前获得铁品位为68.50%左右的铁精矿,反浮选尾矿经再磨—弱磁选后还可获得铁品位为67%以上的铁精矿,获得的最终综合精矿铁品位为68.09%、铁回收率为70.32%。  相似文献   

4.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

5.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

6.
为合理开发利用尼新塔格矿区铁矿石,进行了原矿预选试验,对其预选精矿进行了阶段磨矿—单一弱磁选、阶段磨矿—弱磁选—磁重选和阶段磨矿—反浮选3种流程试验。试验结果表明:干选可抛除产率为9.47%的尾矿,而预选精矿3个工艺流程的试验结果相近;最终推荐采用干式磁选抛尾—干选精矿阶段磨矿—单一弱磁选工艺流程选别,并获得了精矿铁品位为63.52%、回收率为71.57%的技术指标。  相似文献   

7.
司家营铁矿浮选尾矿再选试验   总被引:1,自引:0,他引:1  
张庆丰  韩秀丽  郑卫民 《金属矿山》2012,41(6):152-155,164
根据司家营铁矿两座选矿厂的浮选尾矿的性质差异,采用不同的工艺流程分别对它们进行了再选试验。结果表明:一选厂的浮选尾矿通过磨矿-中磁选-反浮选工艺再选,可以获得到产率为14.15%、铁品位为66.05%、铁回收率为52.21%的铁精矿;二选厂的浮选尾矿通过分级-磨矿-高梯度强磁选-离心机重选工艺再选,可以获得产率为12.64%、铁品位为63.53%、铁回收率为39.34%的铁精矿。试验结果为企业提高资源利用率、增加经济效益提供了科学依据。  相似文献   

8.
河北某难选赤铁矿强磁选—反浮选试验研究   总被引:1,自引:0,他引:1  
采用阶段磨矿—阶段强磁选—强磁选精矿反浮选工艺流程对铁品位不到25%的河北某难选赤铁矿石进行选矿试验,在-0.074mm占96.20%的最终磨矿细度下,取得了精矿产率为25.43%,铁品位为66.27%,铁回收率为68.49%,总尾矿铁品位为10.39%的选别指标。  相似文献   

9.
对新疆某高硅低品位难选赤铁矿石采用阶段磨矿、阶段高梯度强磁选-反浮选原则流程进行了开发利用工艺技术条件研究。结果表明,用磨矿-强磁粗选-粗精矿再磨-强磁精选-强磁精矿1粗1精反浮选、精选尾矿返回流程处理,可获得铁品位为61.10%、铁回收率为65.63%的铁精矿。  相似文献   

10.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

11.
云南某微细粒嵌布赤铁矿选矿工艺研究   总被引:2,自引:0,他引:2  
刘水红 《金属矿山》2009,39(8):35-38
云南某赤铁矿矿石中铁矿物嵌布粒度微细,生产上采用磁选、重选工艺,只能获得铁品位为57%左右的铁精矿,不能满足铁精矿品位大于62%的球团生产要求。为此,对该矿石进行了提高精矿品位的选矿试验。试验采用阶段磨矿-阶段强磁选-反浮选联合工艺流程,在-0.038 mm占86%的最终磨矿细度下,获得了铁品位为62.20%,铁回收率为56.36%的铁精矿。  相似文献   

12.
肖启飞  石云良  刘军 《现代矿业》2019,35(9):121-125
为了探索设计南芬露天铁矿北山部位矿石的工艺流程,针对该矿石进行了工艺矿物学研究,根据工艺矿物学研究结果设计了阶段磨矿-弱磁-中磁-强磁-磁化焙烧-弱磁选、阶段磨矿-弱磁-强磁-反浮选、阶段磨矿-弱磁-强磁-重选-反浮选3种工艺流程,并进行了试验室流程试验,根据流程试验数据确定阶段磨矿-弱磁-强磁-反浮选流程为最优流程,并获得了铁精矿全铁品位≥66%,全铁回收率≥75%的满意指标。  相似文献   

13.
胡义明  刘安平  徐望华 《金属矿山》2013,42(8):47-52,87
为了给梅山铁矿选矿厂降低铁精矿硅含量提供技术支持,在查明现场铁精矿SiO2含量高的原因基础上,采用4种方案进行了从现场浮硫尾矿获取SiO2含量<4%的铁精矿的选矿试验。结果表明,方案1(在现场选铁流程基础上增加弱磁精选并在高梯度磁选时采用低场强)、方案3(弱磁选-高梯度磁选-细筛分级-筛上再磨再选)和方案4(弱磁选-高梯度磁选-弱酸性正浮选)均可获得SiO2含量<4%的铁精矿,但方案1精矿铁品位相对较高而铁回收率相对较低,方案3和方案4则铁回收率相对较高而精矿铁品位相对较低。因此,究竟采用哪种方案,还应通过进一步的扩大试验乃至工业试验予以确定。  相似文献   

14.
董事  刘军 《现代矿业》2013,29(1):27-32,63
南芬选矿厂红矿车间自投产以来,一直存在着铁精矿品位特别是浮选铁精矿品位低(仅为59%)和铁回收率低(仅为65%)的难题,为此根据国内同类矿山的选矿生产实践,并针对本钢集团南芬选矿厂赤铁矿石特性,进行了阶段磨矿-中磁-强磁-反浮选、阶段磨矿-弱磁-细筛提质-强磁-反浮选、阶段磨矿-粗细分级-重-磁-浮联合流程3种流程的试验室小型选矿试验研究,均取得了铁精矿品位大于65%、回收率大于70%的良好选别指标。试验结果表明,现场因为磨矿粒度不够,导致强磁精矿和入浮矿品位偏低,是浮选作业指标不理想的主要原因。  相似文献   

15.
郭晗曙  李萍军 《金属矿山》2011,40(10):96-98
新疆某铁矿选厂采用弱磁选-强磁选-重选工艺处理低品位混合型铁矿石,虽然铁精矿品位可达65%,但回收率仅50%左右。为此采用干式预选-弱磁选-强磁选-反浮选工艺对该矿石进行了旨在提高回收率的选矿试验。试验结果表明,干式预选可先抛弃占原矿约20%的废石,最终精矿铁品位为65.25%,回收率达69.28%,比现场生产指标提高了约19个百分点。  相似文献   

16.
赖伟强 《金属矿山》2017,46(6):94-98
山西某低品位含金镜铁矿铁品位为26.41%、金品位为0.67 g/t。矿石中金主要以自然金形式存在,自然金占总金的88.15%;铁主要存在于赤(褐)铁矿中,赤(褐)铁矿中铁占总铁的68.28%。为回收矿石中有价元素金和铁,进行了优先浮选金,浮选尾矿弱磁选-高梯度强磁选-反浮选回收铁选矿试验。结果表明,在磨矿细度为-0.074 mm占83.78%条件下,以石灰为pH调整剂、水玻璃为分散剂、丁基黄药+丁胺黑药为捕收剂、2#油为起泡剂,经1粗2精2扫浮选,获得了金品位为29.31 g/t、回收率为87.93%的金精矿,选金尾矿经1粗1精1扫弱磁选,获得了铁品位为65.86%、回收率为13.34%的铁精矿1,弱磁选尾矿经1粗1扫高梯度强磁选,强磁选精矿以NaOH为调整剂、改性淀粉为抑制剂、油酸钠为捕收剂,经1粗2精1扫反浮选,获得的铁精矿2铁品位为61.79%、回收率为50.67%,铁精矿1与铁精矿2合并后混合铁精矿铁品位为62.59%、总铁回收率为64.01%。试验结果可以为该矿石有价元素综合回收提供技术依据。  相似文献   

17.
为提高某贫赤铁矿尾矿以重选方法再选得到的铁品位为54.49%的粗精矿的质量,采用磁选、重选、浮选3种方法对该粗精矿进行了选别提质试验,确定了阶段磨矿-弱磁-强磁-反浮选工艺,试验最终获得了综合精矿铁品位为64.16%、精矿产率为75.04%、金属回收率为88.35%的较好选别指标,为该尾矿的资源化利用提供了可靠的技术依据。  相似文献   

18.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

19.
为了回收某铜冶炼渣中的铁, 在工艺矿物学研究基础上, 进行了磨矿—弱磁选—反浮选技术研究。研究结果表明, 样品中Fe含量高达47.14%, 主要赋存于磁铁矿和含铁硅酸盐中, 分布率分别为53.01%、44.38%。在磨矿细度-0.030 mm占95.31%时, 采用弱磁选—反浮选工艺, 可获得产率35.51%、TFe品位62.71%、铁回收率47.03%的铁精矿; 尾矿可作为水泥铁质调整料销售。最终实现铜渣中铁金属的综合回收及无尾排放。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号