首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic liquid crystal (ILC), 1-methyl-3-hexadecylimidazolium tetrafluroborate, was synthesized. The tribological behavior of ILC was evaluated using a four-ball machine at 80 °C. X-ray photoelectron spectroscopic analysis shows that ILC takes part in tribochemical reactions to generate tribochemical products such as B2O3, FeF2, and/or FeF3, and amine which form a protective film on sliding steel surface, resulting in reduced friction and wear. Besides, ILC 1-methyl-3-hexadecylimidazolium tetrafluoroborate is completely transformed from solid state to liquid crystalline phase at 80 °C, which facilitates the ordered arrangement of its long alkyl chain on sliding steel surface and helps to improve the tribological properties. When the ILC is used as an additive of liquid paraffin (LP), it contributes to reduce friction and wear and increase the load-carrying capacity of the base stock both at room temperature and 80 °C. The reason might lie in that a small amount of F from ILC takes part in tribochemical reactions to generate tribochemical products that form a protective film on sliding steel surface, and friction-induced heat accelerates the transition of as-synthesized ILC to a mesophase and the ordered arrangement of its long alkyl chain on sliding steel surface, both resulting in improved load-carrying capacity and anti-wear ability of the ILC.  相似文献   

2.
The tribological behavior of rice husk (RH) ceramics, a hard, porous carbon material made from rice husk, sliding against stainless steel, alumina, silicon carbide, and silicon nitride (Si3N4) under dry conditions was investigated. High hardness of RH ceramics was obtained from the polymorphic crystallinity of silica. The friction coefficients for RH ceramics disks sliding against Si3N4 balls were extremely low (<0.1), irrespective of contact pressure or sliding velocity. Transfer films from RH ceramics formed on Si3N4 balls. Wear-mode maps indicated that the wear modes were powder formation under all tested conditions, resulting in low specific wear rates (<5×10−9 mm2/N).  相似文献   

3.
The objective of this investigation is to assess the influence of graphite reinforcement on tribological behavior of ZA-27 alloy. The composite with 2 wt% of graphite particles was produced by the compocasting procedure. Tribological properties of unreinforced alloy and composite were studied, using block-on-disk tribometer, under dry and lubricated sliding conditions at different specific loads and sliding speeds. The worn surfaces of the samples were examined by the scanning electron microscopy (SEM). The obtained results revealed that ZA-27/graphite composite specimens exhibited significantly lower wear rate and coefficient of friction than the matrix alloy specimens in all the combinations of applied loads (F n ) and sliding speeds (v) in dry and lubricated tests. The positive tribological effects of graphite reinforcement of ZA-27 in dry sliding tests were provided by the tribo-induced graphite film on the contact surface of composite. In test conditions, characterized by the small graphite content and modest sliding speeds and applied loads, nonuniform tribo-induced graphite films were formed leading to the increase of the friction coefficient and wear rate, with increase of the sliding speed and applied load. In conditions of lubricated sliding, the very fine graphite particles formed in the contact interface mix with the lubricating oil forming the emulsion with improved tribological characteristics. Smeared graphite decreased the negative influence of F n on tribological response of composites, what is manifested by the mild regime of the boundary lubrication, as well as by realization of the mixed lubrication at lower values of the v/F n ratio, with respect to the matrix alloy.  相似文献   

4.
The tribological behaviors of various long chain organic molecule LB films, organic molecule modified inorganic nanoparticle LB films, and the C60-LB films were systematically investigated. The correlation between the structure and tribological behavior of the LB films has been explored, while the structural changes of the LB films during friction process were analyzed with Fourier transform infrared (FTIR) microscope. Three kinds of C60-LB films were prepared; its micro-frictional behaviors were investigated by AFM. As the results, the tribological behavior of long chain organic molecule LB films is highly dependent on the molecular chain length and the characteristics of the polar end groups. The optimal tribological behavior is reached at a balanced stiffness and toughness of the molecular chain, which is also related to the bonding strength of the LB film to the substrate. The LB films of nanoparticles modified with organic molecules are superior to long chain organic molecule ones in terms of resisting wear. This is attributed to the enhanced load-carrying capacity of the inorganic nanocores in the LB films of nanoparticles modified with organic molecules. The tribochemical changes including ordering and partial decomposition of the organic modifier have been observed in the sliding of the LB films of inorganic nanoparticles modified with organic molecules against steel. C60-LB film shows excellent tribological behavior, which is highly dependent on the interaction between the C60 nanocluster and the organic long chain molecules.  相似文献   

5.
J. D. B. De Mello  I. M. Hutchings 《Wear》2001,250(1-12):435-448
Surface durability has been reported to be the main factor affecting the tribological behavior of steam-oxidized sintered iron. In this paper, the influence of compaction pressure and powder grade on the surface durability of steam-treated sintered iron is analyzed. Specimens prepared from atomized powders in different sizes were compacted using four different pressures, sintered for 30 min at 1120°C and then subjected to a continuous steam treatment at 540°C for 2 h. The tribological characterization was carried out against a hard steel ball in a reciprocating wear test, in which the electrical contact resistance between the sliding surfaces was continually monitored. The processing parameters had a strong influence on the oxide durability, expressed in terms of the sliding distance required to achieve low contact resistance. High durability was always associated with high compaction pressure and smaller powder size.  相似文献   

6.
The tribological properties of a Ti–MoS2 coating (9 at% Ti) were studied at macroscopic length scales with an in situ tribometer and at microscopic length scales with a nanoindentation instrument equipped for microsliding experiments. Measurements were conducted in controlled environments at both low and high humidity (i.e. ~4%RH and ~35%RH). Reciprocating micro- and macro-sliding tests were performed with spherical diamond tip with a 50 μm radius and a sapphire tip with a radius of 3.175 mm, respectively. For both scales, the range of Hertzian contact pressures was between 0.41 GPa and 1.2 GPa. In situ video microscopy observations identified that the dominant velocity accommodation mode at macro-scale was interfacial sliding. However, an additional velocity accommodation mode, transfer film shearing, was also observed with higher humidity. Overall higher friction was observed with microtribology compared to macrotribology. The higher coefficient of friction was attributed to three different stages during the sliding process, which were identified with respect to different contact pressures, contact areas, tip shapes, and environmental conditions. The first two stages exhibited a solid lubrication behavior with some combination of interfacial sliding, transfer film shearing and microplowing. The transfer film thicknesses for these stages, normalized to the initial Hertzian contact radius, fell in a range of 0.001–0.1. For the third stage, the dominant VAM was plowing and the normalized transfer film thickness fell below this range. Comparisons between the two scales demonstrated that for dry sliding, microscopic contacts on Ti–MoS2 deviate slightly from macroscopic behavior, showing higher limiting friction and microplowing. For humid sliding, microscopic contacts deviate significantly from macroscopic behavior, showing plowing behavior and absence of transfer films.  相似文献   

7.
The tribological behaviour of oil‐lubricated steel‐alumina sliding pairs was investigated using a ball‐on‐disc tribometer at room temperature. Commercial bearing balls of 10 mm diameter were mated to 99.7% Al2O3 discs, and additive‐free mineral oil was fed into the contact area. The sliding speed and the applied normal load were varied, and the initial surface roughness of the Al2O3 disc was altered using different polishing and grinding procedures. The results showed that the surface roughness of the ceramic discs dominated the tribological behaviour under the given experimental conditions. The sliding speed as well as the normal load showed less effect on the friction behaviour, but the amount of wear depended strongly on the normal load. From the results it was concluded that improvement of the surface roughness and optimised surface machining of the ceramic material can be essential for improving the tribological performance for boundary‐lubricated steel‐ceramic sliding pairs.  相似文献   

8.

The efficacy of oil blends containing zinc dialkyl dithiophosphate (ZnDTP) and molybdenum (Mo)-complex additives to improve the tribological properties of boundary-lubricated steel surfaces was investigated experimentally. The performance of oil blends containing three different types of Mo-complex additives of varying Mo and S contents with or without primary/secondary ZnDTP additions were investigated at 100°C. The formation of antiwear tribofilms was detected in situ by observing the friction force and contact voltage responses. Wear volume and surface topography measurements obtained from surface profilometry and scanning electron microscopy studies were used to quantify the antiwear capacity of the formed tribofilms. The tribological properties are interpreted in terms of the tribofilm chemical composition studied by X-ray photoelectron spectroscopy. The results demonstrate that blending the base oil only with the Mo-compound additives did not improve the friction characteristics. However, an optimum mixture of Mo complexes and ZnDTP additive provided sufficient amounts of S and Mo for the formation of antiwear tribofilms containing low-shear strength MoS 2 that reduces sliding friction. In addition, the formation of a glassy phosphate phase due to the synergistic effect of the ZnDTP additive enhances the wear resistance of the tribofilm. This study shows that ZnDTP- and Mo-containing additives incorporated in oil blends at optimum proportions improve significantly the tribological properties of boundary-lubricated steel surfaces sliding at elevated temperatures.  相似文献   

9.
Use of composite material is increasing due to economical processing of complicated shapes in large quantities. Addition of fiber/particulates improves the composite strength. In the current study, the tribological characterization of polymer based particulate composites which are processed at room temperature are investigated. The friction and wear behavior of polystyrene reinforced with steel powder (polymer–metal), alumina powder (polymer–ceramic) and a mix of steel and alumina powders (polymer–metal–ceramic) have been investigated under dry sliding conditions using a pin-on-disc tribometer. Tests were conducted at different normal loads and sliding velocities at room temperature. Coefficient of friction and wear loss during the wear tests are determined. Presence of metal and ceramic particulates affects the tribological behavior of the composite. The rise in temperature of the pin during sliding was measured. The rise in contact temperature is influenced by the composition which in turn influences the wear behaviour. The polymer–ceramic composite exhibits the lowest wear rate among the materials investigated.  相似文献   

10.
In this study we investigated the sliding velocity dependency of the coefficient of friction for a Si-containing diamond-like carbon (DLC-Si) film in an automatic transmission fluid (ATF) under a wide range of contact pressures. The DLC-Si film and a nitrided steel with a surface roughness, RzJIS, of around 3.0 μm were used as disk specimens. A high-carbon chromium steel (JIS-SUJ2) bearing ball was used as a ball specimen. Friction tests were conducted using a ball-on-disk friction apparatus under a wide range of sliding velocites (0.1-2.0 m/s) and contact pressures (Pmax: 0.42-3.61 GPa) in ATF. The friction coefficients for the nitrided steel had a tendency to decrease with an increase in sliding veloicity under all the contact pressure conditions; however, the friction coefficients for the DLC-Si film were stable with respect to sliding velocities under all the contatct pressures. These results indicate that the DLC-Si film suppresses the stick-slip motion during sliding againt steel in ATF, which is a desired frictional characteristic for the electromagnetic clutch disks used under lubrication. Furthermore, the DLC-Si film showed a higher wear resistance and lower aggression on the steel ball specimen than the nitrided steel. There were less hydrodynamic effects on the friction coefficient for the DLC-Si film possibly due to maintenance of the initial surface roughness and its poorer wettability with the fluid. X-ray photoelectron spectroscopy (XPS) analysis of the sliding surfaces revealed that the adsorption film derived from the succinimide on the sliding surfaces of the DLC-Si film and the mating steel ball also contributed to the sufficient and less sliding-velocity-dependant friction coefficients.  相似文献   

11.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

12.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

13.
This paper reports the tribological behavior of CaCO3 nanoparticles as a green additive in poly-alpha-olefin (PAO) base oil under variable applied load, sliding speed, sliding duration, and temperature. The tribological properties and the electrical contact resistance between the tribo-pairs lubricated with PAO alone, and PAO containing CaCO3 nanoparticles, were determined using an Optimol-SRV 4 oscillating friction and wear tester (SRV). The morphology and wear volume of the worn scar were measured simultaneously using a surface profilometer. The results showed that CaCO3 nanoparticles can dramatically improve the load-carrying capacity, as well as the anti-wear and friction-reduction properties of a PAO base oil. In addition, higher applied load, moderate frequency, longer duration time, and lower temperatures are beneficial to the deposition of CaCO3 nanoparticles accumulating on rubbing surfaces. X-ray photoelectron spectroscopy (XPS) reveals a boundary film composed of CaCO3, CaO, iron oxide, and some organic compounds on the worn surfaces.  相似文献   

14.
The tribological behaviors and phase transformation of single crystal silicon against Si3N4, Ruby and steel were investigated in this study. It was found that the strong chemical action between silicon and Fe was the key factor to the tribological behavior of silicon as slid against steel. SEM and Raman spectroscopy indicated that phase transformation of single crystal silicon occurred during the running-in period at low sliding velocity as slid against Si3N4 and Ruby, and gave birth to single or a mixture phase of Si-III, Si-XII and amorphous silicon. The high hardness of counterpart and the absence of chemical action between silicon and counterpart facilitated the phase transformation of single crystal silicon.  相似文献   

15.
TiC1−x N x hard coatings present time-dependent tribological behavior with an initial running-in period (500–2000 cycles) marked by an elevated friction coefficient, followed by >10000 cycles with low-friction and wear at room temperature (RT) in ambient air. The mechanisms behind this behavior are not completely understood. Tribological tests performed at RT and at different relative humidity (RH) levels revealed that a minimum value between 15 and 25% RH is needed to trigger the low-friction regime at a sliding speed of 100 mm s−1. By in situ observations of transfer film growth, it could be observed that third body material is formed during this running-in period by plowing of the coating and shearing of the removed material. The appearance and thickening of the transfer film marks the beginning of the steady-state low-friction regime where the velocity is accommodated by interfacial sliding. At this stage in the tribological test, the recorded Raman spectra indicated the presence of C–H bonds in the wear track. Use of in situ analytical tools during wear tests provided insights with respect to tribological phenomena that were not available by conventional, post-mortem analysis methods.  相似文献   

16.
In this paper, the influence of single walled carbon nano tubes (SWCNTs) addition on the tribological properties of the polyimide (PI) films on silicon substrate was studied. PI films, with and without SWCNTs, were spin coated onto the Si surface. Coefficient of friction and wear durability were characterized using a ball-on-disk tribometer by employing a 4 mm diameter Si3N4 ball sliding against the film, at a contact pressure of ∼370 MPa, and a sliding velocity of 0.042 ms−1. Water contact angle, AFM topography, and nano-indentation tests were conducted to study the physical and mechanical properties of the films. SWCNTs marginally increased the water contact angle of PI film. The addition of SWCNTs to PI has increased the hardness and elastic modulus of pristine PI films by 60–70%. The coefficient of friction of PI films increased slightly (∼20%) after the addition of SWCNTs, whereas, there was at least two-fold increase in the wear life of the film based on the film failure condition of coefficient of friction higher than 0.3. However, the film did not show any sign of wear even after 100,000 cycles of rotation indicating its robustness. This increase in the wear durability due to the addition of the SWCNTs is believed to be because of the improvement in the load-bearing capacity of the composite film and sliding induced microstructural changes of the composite film.  相似文献   

17.
The hydrogenated amorphous carbon (a-C:H) films were prepared on AISI 440C steel substrates using a RF magnetron sputtering graphite target in the CH4 and Ar mixture atmosphere. The friction and wear behavior of a-C:H films were comparatively investigated by pin-on-disc tester under dry sliding and simulated sand-dust wear conditions. In addition, the effects of applied load, amount of sand and sand particle sizes on the tribological performance of a-C:H films were systemically studied. Results show that a-C:H films exhibited ultra-high tribological performance with low friction coefficient and ultra-low wear rate under sand-dust environments. It is very interesting to observe that the friction coefficient of a-C:H film under sand-dust conditions was relatively lower when compared with dry sliding condition, and the wear rate under sand-dust conditions kept at the same order of magnitude (×10−19 m3/N m) with the increase of applied load and particle size as a comparison with the dry sliding condition. Based on the formation of “ridge” layer (composite transfer layer), a transfer layer-hardening composite model was established to explain the anti-wear mechanisms and friction-reducing capacity of a-C:H solid lubrication films under sand-dust conditions.  相似文献   

18.
Polyimide cylinders are slid under 50 N normal load and 0.3 m/s sliding velocity against carbon steel (Ra=0.2 and 0.05 μm), high-alloy steel (Ra=0.05 μm), diamond-like carbon (DLC, Ra=0.05 μm) and diamond-like nanocomposite (DLN, Ra=0.05 μm). Only for a limited range of test parameters, the friction of polyimide/DLN is lower than for polyimide/steel, while polyimide shows higher wear rates after sliding against DLN compared to steel counterfaces. The DLN coating shows slight wear scratches, although less severe than on DLC-coatings that are worn through thermal degradation. Therefore, also friction against DLC-coatings is high and unstable. Calculated bulk temperatures for steel and DLN under mild sliding conditions remain below the polyimide transition temperature of 180 °C so that other surface characteristics explain low friction on DLN counterfaces, as surface energy, structural compatibility and transfer behaviour. Friction is initially determined through adhesion and it is demonstrated that higher surface energy provides higher friction. After certain sliding time, different polyimide transfer on each counterface governs the tribological performance. Polyimide and amorphous DLC structures are characterised by C–C bonds, showing high structural compatibility and easy adherence of wear debris on the coating. However, it consists of plate-like transfer particles that act as abrasives and deteriorate the polyimide wear resistance. In sliding experiments with high-alloy steel, wear debris is washed out of the contact zone without formation of a transfer film. Transfer consists of island-like particles for smooth carbon steel and it forms a more homogeneous transfer film on rough carbon steel. The latter thick and protective film is favourable for low wear rates; however, it causes higher friction than smooth counterfaces.  相似文献   

19.
The dynamics of MoS2 particles in a mineral oil dispersion are studied in the same manner as reported in Part I for graphite dispersions. A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various. slide/roll conditions. In general, the behavior of MoS2 and graphite are similar. That is, the solids lend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However, under other conditions (such as different contact geometry or rougher surfaces), the solid-lubricant dispersions might be beneficial.  相似文献   

20.
For tribological applications of ceramics, surface temperatures and thermal effects produced in frictional processes are important not only in influencing possible mechanisms of friction, wear, and lubricant film failure but also in initiating protective film formation, e.g., as in tribopolymerization. As part of a continuing combined experimental and theoretical study of surface temperatures generated by friction, the fundamental Greens function approach has been applied to a number of ceramics including those used in tribological applications such as bearings and advanced low heat-rejection ceramic engines. The ceramics examined consisted of (a) alumina, Al2O3, (b) single crystal sapphire, Al2O3, (c) partially stabilized zirconia, ZrO2, (d) tungsten carbide, WC, (e) silicon carbide, SiC, and (f) silicon nitride, Si3N4. In addition, three forms each of silicon carbide and silicon nitride were included in this study, i.e., sintered, hot-pressed, and reaction-bonded.

Assuming a single area of real contact, calculated ratios of average surface temperature rise to coefficient of friction plotted against area of contact, velocity, and load on a logarithmic scale are presented for all the above ceramics for A-on-A (self-mating) contact as well as an example of a ceramic in sliding contact against steel. The results show that as expected, very high surface temperatures can be generated by some ceramics, particularly those having very low thermal conductivity (e.g., zirconia), high hardness, or a combination of both. However, not all ceramic combinations produce high temperatures. It is suggested that the information developed may be useful in understanding the wear behavior of ceramics as well as in designing novel anti-wear approaches for ceramic lubrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号