首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis by enhancing the delivery of substrate cholesterol from the outer mitochondrial membrane to the cholesterol side chain cleavage enzyme system on the inner membrane. A recombinant StAR protein lacking the first N-terminal 62 amino acid residues that includes the mitochondrial targeting sequence was shown to stimulate the transfer of cholesterol and beta-sitosterol from liposomes to heat-treated mitochondria in a dose-, time-, and temperature-dependent manner. A recombinant mutant StAR protein that cannot stimulate steroidogenesis by isolated mitochondria did not promote sterol transfer. Unlike the more promiscuous lipid transfer protein, sterol carrier protein 2 (SCP2), StAR did not stimulate phosphatidylcholine transfer in our assay system. The recombinant StAR protein increased cholesterol transfer to heat-treated microsomes as well as to heat- and trypsin-treated mitochondria. These observations demonstrate that StAR has sterol transfer activity, which may reflect an ability to enhance desorption of cholesterol from sterol-rich donor membranes. We suggest that the ability of StAR to promote sterol transfer explains its steroidogenic activity.  相似文献   

2.
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64's steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.  相似文献   

3.
4.
StAR protein may facilitate rapid transfer of cholesterol from the outer to the inner mitochondrial membrane, the site at which cholesterol is converted to pregnenolone by the cholesterol side chain cleavage complex. We have studied the effect of ACTH treatment on StAR mRNA and protein levels in bovine adrenocortical cells in primary culture. Cells were initially cultured for 3 days after isolation, and then treated with ACTH (10(-8) M) for various times up to 24 hours. Northern analysis of total BAC mRNA, using a [alpha32P]-labelled cDNA probe encoding a 5' region of bovine StAR mRNA, revealed two principal hybridising species of 1.6 and 3.0 kb. Western immunoblot analysis revealed a principal band at 30 kDa. Levels of both StAR mRNA and protein showed an increase at 1 hour, reached a maximum at around 6 hours and declined to basal levels at 24 hours. Cortisol secretion (measured by RIA) showed a similar change over the same period. From these results it appears that StAR mRNA and protein levels in BAC are acutely regulated in concert with ACTH-stimulated cortisol secretion.  相似文献   

5.
The Steroidogenic Acute Regulatory (StAR) protein has been put forth as the rapidly synthesized, cycloheximide-sensitive protein that is required for the transport of cholesterol to the inner mitochondrial membrane and the P450scc enzyme and thereby acutely regulates steroidogenesis in steroidogenic tissues. In this study, several of the factors that may be required for StAR activity were examined using an in vitro system. Lysates from StAR-transfected COS-1 cells were added to mitochondria isolated from MA-10 Leydig tumor cells. Results obtained demonstrated that StAR-containing cell lysate increased steroidogenesis in isolated mitochondria, but failed to do so in the presence of m-CCCP, apyrase, or AMP-PNP, suggesting that StAR function requires ATP hydrolysis as well as an electrochemical gradient for maximal steroidogenic activity.  相似文献   

6.
Rat ovarian genes induced by the treatment of immature rats with pregnant mare serum gonadotropin (PMSG) were isolated by a subtraction cloning method. Amongst them was obtained a probable rat homologue of steroidogenic acute regulatory protein (StAR), which has been recently identified as a protein that is an acute regulator of the rate limiting transfer of cholesterol from the outer to the inner mitochondrial membrane. Structure of rat StAR was determined by nucleotide sequence analysis. Northern blot analysis revealed that StAR mRNA levels were rapidly and strongly increased by PMSG/hCG but not by FSH. In situ hybridization revealed that the expression of StAR mRNA was strongly induced by PMSG in theca interna cells as well as in corpora lutea. These findings indicate that expression of StAR mRNA is restricted to and induced in the ovarian steroidogenic cell types where cholesterol is used as a substrate for synthesis of steroid hormones.  相似文献   

7.
8.
The transfer of cholesterol from the outer to the inner mitochondrial membrane, where side-chain cleavage occurs to form pregnenolone, is a crucial event in the regulation of steroidogenesis and recently has been demonstrated to be mediated by steroidogenic acute regulatory protein (StAR). We generated a partial porcine StAR complementary DNA (280 bp) by RT-PCR and used the corresponding antisense riboprobe to quantify the control of StAR gene expression by FSH and insulin-like growth factor I (IGF-I) in hormonally responsive swine granulosa cells, which typically manifest synergistic steroidogenic stimulation by these two dominant intrafollicular regulators. RNase protection assays were implemented to investigate the time course of the actions of FSH (100 ng/ml), IGF-I (100 ng/ml), and FSH plus IGF-I on StAR messenger RNA accumulation in serum-free cultures granulosa cells. Treatment with FSH (1.6-fold) or IGF-I (2.7-fold) alone had a small but consistent stimulatory effect on StAR message accumulation (corrected for 18S ribosomal RNA in each lane) at 48 h, whereas only IGF-I stimulated StAR protein expression (at least 6-fold as assessed by Western blot). Notably, the combined effect of FSH plus IGF-I was strongly synergistic and already significant by 24 h and maximal at 48 h (P < 0.001). Protein kinase A agonist, 8-bromoadenosine 3',5'-cAMP (8-bromo-cAMP) (1 mM) alone elicited a 3.5-fold increase in StAR message and more than 3.7-fold increase in StAR protein expression by 48 h. The combination of IGF-I and FSH or 8-bromo-cAMP evoked a 26- to 40-fold (P < 0.001) synergistic rise in StAR message accumulation. StAR protein also showed a similar synergistic pattern of expression driven by IGF-I and FSH or 8-bromo-cAMP, namely a greater than 56- to 60-fold increase. In summary, two distinct first messenger regulatory molecules, FSH and IGF-I, interact synergistically to induce amplification of StAR messenger RNA and protein expression in serum-free monolayer cultures of immature (swine) granulosa cells.  相似文献   

9.
Apoptosis inhibits steroid biosynthesis, but it is not clear how the Steroidogenic Acute Regulatory (StAR) protein, is affected. To characterize StAR expression during apoptosis, mouse MA-10 Leydig tumor cells were treated with ethane dimethane sulfonate (EDS), an inducer of apoptosis, and the metal ion chelator NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), an inducer of cell death. Both chemicals induced cell death and similarly inhibited dbcAMP-stimulated steroidogenesis and accumulation of the 30 kDa form of StAR. Utilizing the dye JC-1, it was found that TPEN and EDS also impaired the mitochondrial electrochemical potential (delta psi). In Sertoli cells, which also express StAR, EDS induced cell death and attenuated StAR expression. We conclude 1) steroidogenesis and accumulation of mature StAR protein are inhibited as a consequence of the induction of apoptosis; 2) reduced levels of StAR may be partially attributed to inhibition of import because of the loss of delta psi; 3) loss of steroidogenesis is probably due to loss of StAR synthesis and disruption of delta psi.  相似文献   

10.
This study compared levels of referential communication disturbance in speech samples from 41 stable schizophrenia outpatients, 46 parents of patients, and 23 nonpsychiatric control participants in affectively positive versus affectively negative conditions. The speech of the patients and parents showed elevated frequencies of reference failures in the affectively positive condition compared with control participants: the speech of the patients became more disordered in the affectively negative condition, whereas the speech of the parents did not. These results support the idea that referential communication disturbances reflect vulnerability, as well as overt illness, but that affective reactivity of these disturbances is associated mainly with the manifest illness. These findings are consistent with biological, cognitive, and psychological theories about the processes underlying stress responsiveness of schizophrenic symptoms more generally.  相似文献   

11.
12.
13.
The synthesis of heat shock proteins (HSPs) rapidly increases in cells under a broad range of stress conditions in addition to heat shock. Previous studies have shown that the induction of HSPs severely impairs the ability of steroidogenic cells to synthesize steroids in response to acute stimulation. De novo synthesis of the steroidogenic acute regulatory (StAR) protein has been shown to be indispensable for acute steroid hormone biosynthesis; however, the effect of HSP induction on the synthesis of the StAR protein has not yet been studied. In the present study we investigated whether HSP induction might influence the steroidogenic activity of MA-10 mouse Leydig tumor cells, and whether this effect may involve the synthesis of StAR protein. MA-10 cells exposed to 45 C for 10 min and allowed to recover for 2 h at 37 C displayed a 6-fold increase in HSP-70 at 3 h postrecovery and a 20-fold increase in this protein at 6 h postrecovery. This heat shock regimen also acutely inhibited both progesterone production and StAR protein synthesis in MA-10 cells in response to LH and cAMP analog stimulation. The activity and quantity of cytochrome P450 side-chain cleavage and 3beta-hydroxysteroid dehydrogenase were not affected by this heat shock treatment, indicating that the loss of steroidogenic capacity was not a result of inhibition of the enzymes involved in the conversion of cholesterol to progesterone. The results suggest that the previously observed antisteroidogenic effects of heat shock treatment may be due mainly to the acute inhibition of StAR protein synthesis.  相似文献   

14.
A 23-year-old white man experienced burning pain up his right forearm while receiving phenytoin intravenously in the dorsal wrist. Swelling occurred, followed a few days later by an erythematous eruption that eventuated in superficial skin sloughing. The histopathology of two right forearm biopsies, taken a few days apart 3 to 4 weeks after the infusion, was characterized by partial epidermal necrosis and frequent multinucleate keratinocytes. Localized cutaneous reactions to phenytoin and the occurrence of multinucleate epidermal cells in inflammatory skin disease are reviewed.  相似文献   

15.
Highways for protein delivery to the mitochondria   总被引:1,自引:0,他引:1  
Messenger RNA (mRNA) localisation is one of the prime mechanisms to ensure protein localisation in the cytoplasm of polarised embryonic cells, and has been well-studied in the development of Xenopus and Drosophila embryos. But what of other cells? Here, we discuss whether the directed transport of mRNA out of the nucleus, following cytoplasmic highways to a specified organelle in the cytoplasm, might also contribute to the exquisite fidelity of protein targeting observed in all eukaryotic cells.  相似文献   

16.
17.
It has been proposed that the steroidogenic acute regulatory (StAR) protein controls hormone-stimulated steroid production by mediating cholesterol transfer to the mitochondrial inner membrane. This study was conducted to determine the effect of wild-type StAR and several modified forms of StAR on intramitochondrial cholesterol transfer. Forty-seven N-terminal or 28 C-terminal amino acids of the StAR protein were removed, and COS-1 cells were transfected with pCMV vector only, wild-type StAR, N-47, or the C-28 constructs. Lysates from the transfected COS-1 cells were then incubated with mitochondria from MA-10 mouse Leydig tumor cells that were preloaded with [3H]cholesterol. After incubation, mitochondria were collected and fractionated on sucrose gradients into outer membranes, inner membranes, and membrane contact sites, and [3H]cholesterol content was determined in each membrane fraction. Incubation of MA-10 mitochondria with wild-type StAR containing cell lysate resulted in a significant 34.9% increase in [3H]cholesterol content in contact sites and a significant 32.8% increase in inner mitochondrial membranes. Incubations with cell lysate containing N-47 StAR protein also resulted in a 16.4% increase in [3H]cholesterol in contact sites and a significant 26.1% increase in the inner membrane fraction. In contrast, incubation with the C-28 StAR protein had no effect on cholesterol transfer. The cholesterol-transferring activity of the N-47 truncation, in contrast to that of the C-28 mutant, was corroborated when COS-1 cells were cotransfected with F2 vector (containing cytochrome P450 side-chain cleavage enzyme, ferridoxin, and ferridoxin reductase) and either pCMV empty vector or the complementary DNAs of wild-type StAR, N-47 StAR, or C-28 StAR. Pregnenolone production was significantly increased in both wild-type and N-47-transfected cells, whereas that in C-28-transfected cells was similar to the control value. Finally, immunolocalization studies with confocal image and electron microscopy were performed to determine the cellular location of StAR and its truncated forms in transfected COS-1 cells. The results showed that wild-type and most of the C-28 StAR protein were imported into the mitochondria, whereas most of N-47 protein remained in the cytosol. These studies demonstrate a direct effect of StAR protein on cholesterol transfer to the inner mitochondrial membrane, that StAR need not enter the mitochondria to produce this transfer, and the importance of the C-terminus of StAR in this process.  相似文献   

18.
Adenosine has been identified in the anterior pituitary gland and is secreted from cultured folliculostellate (FS) cells. To determine whether adenosine controls the secretion of anterior pituitary hormones in vitro, adenosine was incubated with anterior pituitaries. It stimulated prolactin (PRL) release at the lowest concentration used (10(-10) M); the stimulation peaked at 10(-8) M with a threefold increase in release and declined to minimal stimulation at 10(-4) and 10(-3) M. Follicle-stimulating hormone release was maximally inhibited at 10(-8) M, whereas luteinizing hormone release was not significantly inhibited. Two selective A1 adenosine receptor antagonists (10(-7) or 10(-5) M) had no effect on basal PRL release, but either antagonist completely blocked the response to the most effective concentration of adenosine (10(-8) M). In contrast, a highly specific A2 receptor antagonist (10(-7) or 10(-5) M) had no effect on basal PRL release or the stimulation of PRL release induced by adenosine (10(-8) M). We conclude that adenosine acts to stimulate PRL release in vitro by activating A1 receptors. Since the A1 receptors decrease intracellular-free calcium, this would decrease the activation of nitric oxide synthase in the FS cells, resulting in decreased release of nitric oxide (NO). NO inhibits PRL release by activating guanylate cyclase that synthesizes cGMP from GTP; cGMP concentrations increase in the lactotrophs leading to inhibition of PRL release. In the case of adenosine, NO release from the FS cells decreases, resulting in decreased concentrations of NO in the lactotrophs, consequent decreased cGMP formation, and resultant increased PRL release.  相似文献   

19.
Wilson's disease (WND) is an inherited disorder of copper homeostasis characterized by abnormal accumulation of copper in several tissues, particularly in the liver, brain, and kidney. The disease-associated gene encodes a copper-transporting P-type ATPase, the WND protein, the subcellular location of which could be regulated by copper. We demonstrate that the WND protein is present in cells in two forms, the 160-kDa and the 140-kDa products. The 160-kDa product was earlier shown to be targeted to trans-Golgi network. The 140-kDa product identified herein is located in mitochondria as evidenced by the immunofluorescent staining of HepG2 cells with specific mitochondria markers and polyclonal antibody directed against the C terminus of the WND molecule. The mitochondrial location for the 140-kDa WND product was confirmed by membrane fractionation and by analysis of purified human mitochondria. The antibody raised against a repetitive sequence in the N-terminal portion of the WND molecule detects an additional 16-kDa protein, suggesting that the 140-kDa product was formed after proteolytic cleavage of the full-length WND protein at the N terminus. Thus, the WND protein is a P-type ATPase with an unusual subcellular localization. The mitochondria targeting of the WND protein suggests its important role for copper-dependent processes taking place in this organelle.  相似文献   

20.
Determined the importance of reduced and aromatized metabolites of testosterone for male sexual behavior in 111 male castrated deer mice treated with 5-alpha reductase and aromatase inhibitors. In Exp I, testosterone propionate (TP) activation of male copulatory behavior was blocked by the administration of the 5-alpha-reductase inhibitor 4-androsten-3-17-beta-carboxylic acid (17BC). These treatments also prevented TP stimulation of seminal vesicles and ventral prostate gland weight. The inhibitory effects of 17BC were specific to testosterone, since 17BC did not prevent dihydrotestosterone propionate (DHTP) induction of male sexual behavior or seminal vesicles and ventral prostate gland weight increases. In Exp II, TP activation of male copulatory behavior was prevented by the administration of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD). The ATD did not interfere with DHTP activation of male reproductive behavior. Also, TP and DHTP stimulation of accessory sex organ weight was not blocked by ATD. It is suggested that metabolism of testosterone to both 5-alpha-reduced androgens and estrogens is obligatory for testosterone to reliably stimulate male sexual behavior in castrated male deer mice. (46 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号