首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
对火灾升温条件下压弯约束钢柱的轴力和截面弯矩发展规律进行了研究,给出了确定其屈曲温度和破坏温度的简化方法。约束钢柱屈曲前,随着温度升高钢柱轴力线性增加,截面弯矩基本保持不变;约束钢柱屈曲后,钢柱轴力减小,截面弯矩突然增大,钢柱处于轴力和弯矩共同作用下。确定屈曲温度时,采用无约束压弯钢柱屈曲温度的计算公式,钢柱轴力考虑轴向约束的影响;确定破坏温度时,破坏准则采用截面屈服条件表示的轴力-弯矩相关关系,轴力取初始轴力。利用有限元方法对本文公式进行了验证,对通常情况下的约束钢柱(荷载比小于0.7,约束刚度比小于0.1),本文方法与有限元方法计算结果吻合较好。  相似文献   

2.
给出了确定轴压约束钢柱在火灾升温条件下屈曲温度和破坏温度的简化计算方法,采用有限元方法、相关研究者的研究成果和试验结果对计算方法进行了验证。约束钢柱屈曲前,随着温度升高,轴力线性增加,截面弯矩很小并保持不变,采用无约束钢柱屈曲温度计算公式确定其屈曲温度,钢柱轴力考虑轴向约束的影响;约束钢柱屈曲后处于轴力和弯矩的共同作用下,利用截面屈服条件表示的轴力-弯矩相关关系确定其破坏温度,钢柱轴力取升温前初始轴力。本文方法计算结果与有限元分析结果和其他研究人员的研究成果吻合较好,与试验结果的比较表明本文方法偏于安全。  相似文献   

3.
利用验证的有限元模型分析了轴向约束刚度比、轴力荷载比和钢柱长细比对火灾下轴心受压H形截面约束钢柱屈曲温度和破坏温度的影响,给出了其屈曲温度和破坏温度的计算方法。轴向约束刚度比对约束钢柱屈曲温度和破坏温度的影响可用指数函数表示,轴力荷载比和钢柱长细比对约束钢柱屈曲温度和破坏温度的影响可用多项式表示。采用有限元方法对计算公式进行了验证,设计公式计算结果与有限元分析结果吻合较好,且设计公式给出偏于安全的结果。  相似文献   

4.
约束钢柱抗火性能试验研究   总被引:5,自引:1,他引:4       下载免费PDF全文
介绍了一组约束钢柱抗火试验,包括试验设计、钢柱温度和位移测量结果、钢柱试验后残余变形,以及试验的数值模拟等。试验变化参数为钢柱所受约束的刚度。约束刚度大小对钢柱抗火性能的影响包括:约束刚度比大的钢柱,其屈曲温度和破坏温度均较低;钢柱屈曲后,约束刚度比大的钢柱在变形较小时即可达到新的平衡位置;约束钢柱的破坏温度一般高于其屈曲温度,且随轴向约束刚度比的增大,破坏温度与屈曲温度之差增大。试验结果与有限元分析结果进行了对比,两者吻合较好,有限元方法研究约束钢柱抗火性能具有较高的精度。  相似文献   

5.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

6.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

7.
通过对端部约束H型钢柱火灾响应及火灾后力学性能的对比试验研究,分析了不同约束条件对H型钢柱火灾行为及受火后力学性能的影响。试验测定了钢柱的温度响应及位移响应,在此基础上进一步开展了火灾后的力学性能试验。结果表明:钢柱在升温和降温过程中存在一定的滞后性,火灾升温时柱顶位移按自由膨胀、对称约束及不对称约束依次减小;约束性质对火灾后H型钢柱的力学性能有明显的影响,对称约束的H型钢柱在火灾后的应变明显不同于非对称约束的情况,而且非对称约束钢柱压曲破坏前的整体刚度明显高于对称约束;无约束H型钢柱受火后的整体屈曲主要沿弱轴方向弯曲,而约束H型钢柱受火后的整体受压屈曲则沿两个方向均有明显的侧向弯曲,且沿弱轴方向的受压曲线基本呈三角形,绕强轴方向则为S形。  相似文献   

8.
以受约束波纹腹板梁为研究对象,利用有限元模型进行了截面温度均匀和不均匀分布对轴向约束波纹腹板梁悬链线效应影响的对比分析。结果表明:由于不均匀温度下产生的热弯曲效应,约束钢梁在受压阶段的竖向挠度更大而梁内轴力更小;均匀温度受约束钢梁的临界温度比不均匀温度钢梁高6.2%;不均匀温度钢梁的温度比越小,钢梁的热弯曲效应越明显,相应的临界温度越低。  相似文献   

9.
《钢结构》2014,(5)
目前对钢框架稳定的研究主要基于钢柱均匀升温的假定。然而,实际火灾下,由于热浮力效应,建筑物内部的温度分布可能不均匀。该文基于楼层屈曲和两区域火灾模型概念,研究柱纵向非均匀升温作用下无支撑钢框架的弹性稳定性。首先,为模拟非均匀升温下的钢柱,给出一个可检验轴向载荷、非均匀升温分布、热边界条件对无支撑框架钢柱侧向刚度影响的分析模型。基于欧拉-伯努利梁理论推导出柱模型的侧向刚度方程。然后,采用该模型评价非均匀升温作用下无支撑钢框架的稳定性。采用数值案例分析非均匀升温作用下不同钢框架的稳定性,有限元分析方法验证了所给方法分析结果的有效性。  相似文献   

10.
在火灾降温阶段,结构构件的截面部分区域升温的同时,也有区域在降温,结构受力性能较为复杂,建筑结构更易发生倒塌破坏。为研究火灾降温阶段型钢混凝土框架结构的受力性能,通过已有火灾升降温条件下型钢混凝土框架及柱的受力性能试验,得到了构件截面的温度-时间关系曲线、结构变形-时间关系曲线,以及升降温过程中框架及柱的破坏形态。同时,采用有限元模型对升降温过程中型钢混凝土框架及柱的受力性能进行分析。结果表明:在火灾降温阶段,构件截面的升温区和降温区的范围在逐渐变化,截面的应力也随之发生变化。在此阶段,构件截面内部温度升高导致材料强度降低,截面外部处于降温区域的材料强度进一步降低,截面内外温差导致截面周围出现拉应力。上述因素的共同作用导致结构在火灾降温阶段发生破坏。相较于受火前,结构温度降至室温时结构的刚度降低、变形增加。  相似文献   

11.
This paper presents a practical design method for calculating the buckling and failure temperatures of restrained steel column under axial load or combined axial load and bending moment based on the results of extensive numerical parametric studies. Design equations for unrestrained columns in fire are adopted to calculate the buckling temperature of a restrained column by including the additional compression axial force due to restraint thermal elongation. The cross-section yield axial strength-plastic bending moment interaction curve is employed when calculating the failure temperature of restrained column. Results from the proposed method are compared with ABAQUS simulation for different cases. For the restrained column under axial load only, the buckling and failure temperatures calculated by the simplified method agree well with predictions by ABAQUS. For the restrained column under combined axial force and bending moment with realistic parameters, the buckling and failure temperatures predicted by the proposed method also agree well with ABAQUS predictions.  相似文献   

12.
This paper investigates behaviours of the restrained steel column in fire. For the restrained steel column under axial load only, investigated parameters include the axial load, the axial restraint stiffness, and the column slenderness; for the restrained steel column under combined axial load and bending moment, studied parameters included the axial load, the bending moment load, the axial restraint stiffness, the column slenderness and the end moment ratio.The results of parametric studies show that (1) the axial restraint causes a reduction in the failure temperature of the restrained column. The reduction increases with the increase in the axial restraint stiffness. However, when the axial restraint stiffness ratio is greater than a certain value, no further reduction occurs; (2) the difference between failure and buckling temperatures of a restrained column is great for columns with great axial restraint stiffness or great slenderness or small load ratio. This means that in this situation, the fire resistance of the restrained column can be increased from the column buckling temperature by considering the post-buckling behaviour; (3) an increase in the column axial load ratio or bending moment ratio causes both the column buckling and failure temperatures to decrease; (4) with an increase in the column end moment ratio, the failure temperature of restrained column decreases. The results of parametric studies will form the basis of a simplified calculation method to be presented in the companion paper.  相似文献   

13.
This is the first of the three companion papers dealing with the restrained steel column behaviours in fire. This paper reports the results of two new fire tests on axially and rotationally restrained steel columns that have different axial restraint stiffness. Axial and rotational restraints were applied by a restraint beam. The external applied axial load was kept constant during the fire test. The increase and decrease in axial force in the restrained steel column was borne by the restraint beam. Test results included the temperature, the axial displacement and the lateral deflection of the test column. It was found that the axial restraint reduced the buckling temperature of a restrained column. The effects of axial restraint to the failure temperature depended on the load ratio and the axial restraint stiffness ratio. A Finite Element Method (FEM) model was built to simulate the fire test. The damping factor fitting for simulating behaviours of restrained steel column in fire was selected through parametric analysis. The validated FEM model was used to perform parametric studies on the behaviour of restrained steel column in Part 2, results of which were used to develop a practical design method for restrained steel column in fire in Part 3.  相似文献   

14.
This paper presents a new simplified design method for calculating the buckling- and failure-temperature of uniformly heated, axially restrained steel column subjected to axial compression load or combined axial compression force and bending moment in fire. Here the term “buckling temperature” refers to the temperature at which the restrained column loses temporary stability due to increased axial compression load, while “failure temperature” refers to the temperature at which the axial load in column returns to the initial level. For a restrained column under axial load, this paper presents effects of three different column design parameters, including the axial restraint stiffness, the initial axial load and the column slenderness, on the column buckling- and failure-temperature using a calibrated finite element method model. Two additional parameters are analyzed, including the bending moment ratio and the end moment ratio, for a restrained column under combined axial force and bending moment. To derive design calculation equations, regression analyses were carried out to express the reduction in column buckling- and failure-temperature, from that of the column without axial restraint, as functions of the aforementioned column design parameters. The accuracy of these design equations are then assessed by comparison between their predictions and finite element predictions.  相似文献   

15.
为了研究防火涂料局部破损后钢柱的抗火性能,根据分段平衡微分方程,分别推导了两端铰支和固支的钢柱局部防火涂料破损后高温下的挠曲线方程,采用边缘屈服准则得出了局部防火涂料破损后轴向约束钢柱临界温度的计算方法。用有限元对高温下的挠度和轴向位移进行了验证,结果吻合较好。通过算例计算了两端铰支轴向约束刚度内力随温度的变化关系,并计算了临界温度。研究结果表明:轴向约束增加高温下钢柱的内力,降低钢柱的临界温度;破损长度越长、轴向约束刚度越大,临界温度越低。  相似文献   

16.
周明  王新堂  郑小尧 《工业建筑》2012,42(6):153-157,33
通过对3根柱顶受不同约束的H型钢柱的火灾后力学性能的对比试验研究,讨论不同约束对H型钢柱火灾后力学性能的影响。3种约束条件分别为:柱顶对称约束、柱顶非对称约束和自由膨胀。火灾中及火灾后的试验结果显示,H型钢柱的升温和降温过程存在一定的滞后性,受火后的H型钢柱仍有较高的轴压承载力,最终破坏时伴随着翼缘和腹板的局部屈曲,约束性质对H型钢柱火灾后的力学性能有明显的影响,也即受对称约束的H型钢柱在火灾后轴压作用下的纵向应变明显不同于非对称约束的情况,而且非对称约束钢柱压曲破坏前的整体刚度明显高于对称约束。火灾后H型钢柱沿强轴方向的侧向弯曲形状呈S形变化,这一特征对于受对称约束和自由膨胀的钢柱更为明显。  相似文献   

17.
Experiment on restrained steel beams subjected to heating and cooling   总被引:2,自引:0,他引:2  
This paper describes the performance of restrained steel beams in fire experiments that were completed recently in the Fire Laboratory of Tongji University. It is shown that restrained steel beams have better fire-resistant capability than isolated steel beams. At the beginning of heating due to fire, an internal axial compression force was produced in the restrained beams by thermal expansion. When the temperature was up to a certain value, the internal axial compression force in the beams began to decrease, and eventually the compression force vanished and the tension force was initiated, due to the increase in the deflection of the beams causing a catenary action. This phenomenon explains why a restrained steel beam has higher fire-resistant capacity than an isolated steel beam. After the fire went out, a larger tension force was produced in the restrained steel beams by contraction as the temperature decreased. In addition, local buckling at the bottom flange of the beams near the ends was observed in the experiments. According to the results from the experiments, the stiffness of the axial restraint plays an important role in the behavior of restrained steel beams subjected to heating and cooling in a fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号