首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Production of methyl mercury (MeHg) is elevated in new hydroelectric reservoirs because organic carbon stimulates methylation of inorganic mercury (Hg) stored in the terrestrial system. This can cause adverse health in fish and in organisms that eat fish. We expected that burning vegetation before flooding would decrease the amount of Hg and organic carbon and thereby lower MeHg production. We conducted a replicated field experiment to investigate the effects of burning vegetation and soil before flooding on MeHg production and bioaccumulation. Vegetation and soil were added to mesocosms in the following combinations: unburned vegetation and unburned soil (Fresh treatments), burned vegetation and unburned soil (Partial Burn treatments), and burned vegetation and burned soil (Complete Burn treatments). Controls had no added vegetation or soil. During combustion with propane torches, a large percentage of the total Hg (THg) and MeHg was lost from vegetation and soil. THg and MeHg concentrations were highest in the surface water of Fresh treatments, lower in Partial Burn treatments and lowest in Complete Burn treatments and controls. Differences in concentrations of MeHg in biota were consistent among treatments, but did not follow aqueous concentrations. On the final sample date, MeHg concentrations in biota of Controls and Partial Burn treatments were greater than in Complete Burn and Fresh treatments. The lack of relationship between MeHg in biota and MeHg in water may have been due to modification of the bioavailability of MeHg by dissolved organic matter as the ratios of MeHg in biota to water were inversely correlated with concentrations of dissolved organic carbon. Although burning before flooding decreased MeHg concentrations in the water, it did not lower MeHg accumulation in the lower food web.  相似文献   

2.
Time series on fish mercury (Hg) development are rare for hydroelectric reservoirs in the tropics. In the central-western part of Brazil, a hydroelectric reservoir, called Lago Manso, was completed in 1999 after that background levels of fish Hg concentrations had been determined. The development for the first 3 years was studied in 2002. The objective of the present study was to determine development of fish Hg concentrations for a second three-year period after flooding. The bioaccumulation factor and certain abiotic and biotic factors, possibly affecting the availability and accumulation of Hg, were also examined. The results show that Hg levels in fish from Lago Manso have increased more than five times compared to the background levels observed before construction of the reservoir. At the same time, dissolved organic carbon has increased while dissolved oxygen has decreased indicating enhanced bioavailability of Hg. In the reservoir, Salminus brasiliensis had in average a Hg content of 1.1 microg g(-1) f.w., Pseudoplatystoma fasciatum 1.2, Serrasalmus marginatus/spilopleura 0.9, and Brycon hilarii 0.6 microg g(-1) f.w. The average fish Hg contents were higher downstream, except for B. hilarii. In the reservoir, the average Hg content of each species was in 2005 always over the consumption limit (0.55 microg total Hg g(-1) f.w.) recommended by WHO. Therefore, the people living around Lago Manso should be informed of the health effects of Hg, and fish consumption recommendations should be carried out. The accumulation of Hg varies widely between species as shown by the bioaccumulation factor which ranges between 5.08 and 5.59 log units. The observed variation is explained by differences in diet and trophic position with piscivorous fish exhibiting the highest mean Hg concentration, followed by carnivorous and omnivorous species. Carbon isotope analyses imply that trophic position is not the only cause of the observed differences in Hg levels between omnivorous B. hilarii, having a diet partly based on C(4) plants, and carnivorous S. marginatus as well as piscivorous S. brasiliensis, whose carbon sources are depleted in (13)C. The fact that the species have different carbon sources indicates that they belong to different food chains.  相似文献   

3.
Mercury is a neurotoxin and global pollutant, and wetlands and newly flooded areas are known to be sites of enhanced production of monomethylmercury, the form of mercury that is readily biomagnified in aquatic food chains to potentially toxic levels. The Okavango Delta in Botswana, Southern Africa, is the largest inland delta in the world and a wetland ecosystem that experiences dramatic annual flooding of large tracts of seasonal floodplains. The Delta was, therefore, expected to be home to high mercury levels in fish and to be an area where local subsistence fishing communities would be at substantial risk of mercury toxicity from fish consumption. Total mercury concentrations measured in 27 species of fish from the Okavango Delta averaged (mean ± s.d., wet weight) 19 ± 19 ng g−1 in non-piscivorous fish, and 59 ± 53 ng g−1 in piscivorous fish. These mercury concentrations are similar to those reported for fish from lakes in other areas of tropical Africa, demonstrating that not all wetlands are sites of elevated mercury concentrations in biota. Even more intriguing is that concentrations of mercury in fish from across tropical Africa are systematically and substantially lower than those typically reported for fish from freshwater ecosystems elsewhere globally. The reasons for this apparent “African mercury anomaly” are unclear, but this finding poses a unique opportunity to improve our understanding of mercury's biogeochemical cycling in the environment. Mercury concentrations measured in human hair collected in subsistence fishing communities in the Okavango Delta were similarly low (0.21 ± 0.22 μg g−1 dry weight) despite high levels of fish consumption, and reflect the low mercury concentrations in the fish here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号