共查询到18条相似文献,搜索用时 78 毫秒
1.
错距旋压成形过程高度非线性,特别是对于多目标优化问题,其工艺参数与目标函数之间的关系一般很难用精确的数学函数表达。该文基于正交试验,以旋压件椭圆度、直线度、壁厚偏差为评价指标,选择旋压进给比、总减薄率、轴向错距为试验因素,获得16组正交试验数据。采用灰色关联度方法对所构造的正交试验数据进行分析处理,将多目标优化问题转化为单目标优化问题;应用支持向量机网络回归模型,并结合遗传算法对错距旋压过程进行寻优,获得了优化的20钢筒形件错距旋压成形工艺参数。试验结果表明,所获得的优化工艺参数可有效提高旋压制件的成形质量。 相似文献
2.
筒形件错距旋压工艺参数选择专家系统 总被引:2,自引:0,他引:2
薛克敏 《中国有色金属学报》1998,8(A01):168-171
针对筒形件错距矩压工艺中影响旋压件质量的参数的多样性和复杂性,以及参数的匹配至今多信赖于工程技术人员的经验与实验,将专家系统技术和优化设计方法结合和于错距旋压参数选择专家系统演示原型; 相似文献
3.
4.
5.
6.
基于有限元模拟的筒形件错距旋压智能参数优化系统研究 总被引:1,自引:0,他引:1
以有限元模拟分析为基础,建立了筒形件错距旋压智能参数优化系统。实现了对错距旋压居一维仿真并结合人工智能技术,实现了对错距旋压工艺参数的优化。 相似文献
7.
8.
30CrMnSiA钢薄壁筒错距旋压成形工艺研究 总被引:4,自引:0,他引:4
通过对30CrMnSiA钢筒体错距旋压试验,系统研究了毛坯厚度、减薄率、旋轮压下量分配、旋压道次及道次间热处理等工艺参数对旋压过程和产品质量的影响。结果表明:较厚的30CrMnSiA钢毛坯,不用道次间热处理,通过两道次或三道次错距旋压,就可获得高质量的薄壁筒。 相似文献
9.
10.
11.
12.
13.
铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理 总被引:1,自引:0,他引:1
铝合金大型复杂薄壁壳体旋压是多道次、多参数耦合作用下的复杂非线性过程,该过程中易出现反挤、鼓包、破裂等缺陷。采用实验和有限元模拟相结合的方法,分析这些缺陷的形成机理。结果表明,过大减薄率引起的旋轮前方金属隆起是导致反挤、鼓包、环状剥离及周向开裂的主因,过高的芯模转速会导致周向开裂和鳞状剥离等缺陷。提出了相应的缺陷防止措施,即采用24%以内的减薄率可以避免旋轮前方金属的严重隆起;限制芯模转速过高,以避免周向开裂和鳞状剥离等缺陷的发生。采用这些措施旋制出了合格的铝合金大型复杂薄壁壳体。 相似文献
14.
15.
16.
17.
《中国有色金属学会会刊》2020,30(5):1169-1182
The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30−170 µm in thickness, 4−8 mm in width, and 0.5−1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161−274 µm, depending on the process parameters. Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle−wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×105 and 1.26×104 K/s for the ribbon with thickness of 30 µm and for the powder with size of 87 µm, respectively. 相似文献