共查询到20条相似文献,搜索用时 93 毫秒
1.
目的优化香菇柄多糖的微波辅助提取工艺,并研究其抗氧化活性。方法通过单因素试验,选择时间、功率以及料液比为自变量,多糖提取率为响应值,采用响应曲面法设计分析研究各自变量及其交互作用对多糖提取率的影响。经分析模拟得到二次多项式回归方程的预测模型,从而获得最适的提取工艺条件;并采用DPPH法、Fenton反应等方法测定香菇柄多糖的抗氧化活性。结果在提取时间8 min、微波作用功率400W、料液比1:7(m:V)的条件下获得多糖提取率为4.91%;香菇柄多糖具有清除DPPH自由基与羟自由基的能力。结论本研究可为香菇柄的再利用与开发提供参考。 相似文献
2.
金针菇多糖闪式提取工艺及其抗氧化活性研究 总被引:1,自引:0,他引:1
《食品与发酵工业》2016,(10):216-221
以金针菇为原料,应用响应面法优化了金针菇多糖的闪式提取工艺,并对多糖的抗氧化活性进行了测定。结果表明:最佳闪式提取条件为液料比26∶1(m L∶g)、提取电压190 V、提取时间103 s,在该条件下,提取两次,多糖最终提取率为6.85%,较高温浸提法提高了40.08%。抗氧化实验表明,金针菇多糖具有明显的还原能力和清除羟自由基和DPPH自由基的能力。 相似文献
3.
目的:研究西洋参花多糖闪式提取的最佳工艺条件及抗氧化活性。方法:以西洋参花为原料,考察提取电压、液料比、提取时间对西洋参花多糖得率的影响,采用响应面法优化西洋参花多糖闪式提取工艺。通过测定西洋参花多糖对DPPH自由基和羟基自由基的清除作用及总还原力,考察西洋参花多糖的抗氧化活性。结果:通过实验得到西洋参花多糖的最佳提取工艺条件为:提取电压:130 V,液料比:30:1 mL/g,提取时间:100 s。在此条件下,西洋参花多糖得率为11.12%±0.23%,与模型预测值相当;西洋参花多糖体外抗氧化显示其对DPPH自由基和羟基自由基清除率的IC50值分别为1.34、1.42 mg/mL,且具有一定还原力。表明西洋参花具有较强的抗氧化活性,且随着多糖浓度的增加,抗氧化活性不断增强。结论:本实验得到的提取工艺条件具有可行性,可用于西洋参花多糖的提取。西洋参花多糖具有较好的抗氧化活性。本研究可为西洋参花的开发利用提供理论依据。 相似文献
4.
5.
6.
为了提高香菇多糖的得率和抗氧化活性,本文采用超声波辅助法提取香菇多糖,在单因素实验的基础上,利用响应曲面法对提取工艺进行优化,并对优化条件下提取的香菇多糖进行体外抗氧化活性测定和结构分析。优化后的最佳提取工艺为超声时间50min、超声温度62℃、超声功率640W。此优化条件下香菇多糖的得率为7.34%,氧自由基吸收能力(ORAC值)为821.35μmol Trolox/g,实验测得数据与预测值无显著性差异。测定产物香菇多糖的羟基自由基的清除能力、ABTS自由基清除能力和还原力,结果表明提取后的香菇多糖具有较高的抗氧化活性。进行红外光谱分析发现超声提取多糖具有多糖的特征吸收峰,说明化学结构没有明显改变。 相似文献
7.
香菇柄中多糖提取工艺的优选 总被引:11,自引:0,他引:11
对香菇柄中多糖进行提取 ,考察了温度、酸碱盐介质以及利用超声波对香菇柄中多糖提取的影响。试验结果表明 ,香菇柄粉末用乙醚回流提取之后 ,用质量分数为 2 %的NaOH溶液在95℃时浸提 ,可将香菇柄中的有效成分充分提取出来 ,多糖提取率 (以吸光度表示 ) ,可高达 0 472。同时 ,用超声波提取多糖能显著提高多糖的产率 ,且随着超声波提取时间的增长 ,多糖提取率呈增长趋势。试验测得 ,以水为介质 ,使用超声波提取样品仅 2 0min,其多糖吸光度也可高达 0 3 49。 相似文献
8.
香菇柄多糖乙酰化修饰及其抗氧化活性 总被引:1,自引:0,他引:1
以香菇柄为原料,采用乙酸酐法制备乙酰化香菇柄多糖,考察不同乙酸酐用量在NaOH体系和甲酰胺体系中对多糖乙酰化修饰取代度以及多糖结构特性的影响,并对多糖及其乙酰化多糖的抗氧化活性进行评价。结果表明,在NaOH体系和甲酰胺体系中,香菇柄多糖乙酰化修饰取代度与乙酸酐用量均呈正相关,在乙酸酐用量为5 mL时,取代度分别为0.31和0.14。红外光谱表明,乙酰化修饰香菇柄多糖除具有多糖特征峰外,还出现了乙酰基的特征吸收峰,说明香菇柄多糖的乙酰化修饰成功。NaOH体系乙酰化修饰后多糖仍然具有三螺旋结构,而甲酰胺体系乙酰化修饰后多糖的三螺旋结构被破坏。抗氧化结果表明,香菇柄多糖乙酰化修饰前后均具有一定的抗氧化能力,并呈现一定的量效关系,且NaOH体系乙酰化多糖的抗氧化活性强于香菇柄多糖和甲酰胺体系乙酰化多糖,宜采用NaOH体系对香菇柄多糖进行乙酰化修饰。 相似文献
9.
本研究基于单因素实验并结合Box-Behnken设计优化闪式提取无花果总黄酮的工艺,通过考察乙醇体积分数、提取电压、液料比以及提取时间等因素对总黄酮提取的影响,获得无花果总黄酮闪式提取的最佳条件,并对其抗氧化活性进行了研究。结果表明,响应面优化无花果总黄酮的最佳提取工艺条件为:乙醇体积分数50%,液料比50:1 mL/g,提取时间80 s,提取电压150 V。在此条件下无花果总黄酮的提取量为(36.94±0.02) mg/g,与预测值36.98 mg/g误差仅为0.103%,证实了结果的准确可靠。抗氧化实验显示无花果总黄酮对DPPH自由基的清除效果优于抗坏血酸,而对ABTS+自由基的清除效果弱于抗坏血酸,其对OH自由基清除的IC50为0.098 mg/mL,与抗坏血酸(IC50为0.159 mg/mL)相比,黄酮对OH自由基的清除效果更好。闪式提取无花果总黄酮提取量较高且耗时更短,表明闪式提取法应用于无花果黄酮提取更具优势。无花果总黄酮具有较好的抗氧化活性,有望为功能性食品或保健品的开发提供理论基础。 相似文献
10.
香菇柄多糖的微波辅助提取及其活性研究 总被引:5,自引:0,他引:5
对微波辅助提取香菇柄多糖的工艺进行研究,采用正交试验得出优化的工艺条件为:微波功率700W,液料比20:1(mL:g).提取时间3min,提取2次.与常规回流提取工艺相比,提取时间缩短60倍,多糖提取率提高88.7%.红外光谱检测表明微波辅助提取法和常规回流提取法所得多糖(分别为MAE-P和CRE-P)的红外图谱图具有比较相似的特征;MAE-P对S180抑瘤率为35.63%,并且对脾淋巴细胞有极显著增殖作用,其活性与CRE-P相比无显著差异.结果表明:微波辅助提取法不仅促进香菇柄多糖的有效溶出,而且能够较好地保持其生物活性. 相似文献
11.
将香菇经乳酸菌发酵后,通过小鼠灌胃实验和16S rRNA高通量测序,研究其对肠道菌群结构和多样性的影响,并研制调味即食产品。结果表明,中等剂量(10 g/kg,以小鼠质量计)的发酵香菇改变了小鼠肠道菌群的物种多样性,其特有物种和稀有物种数量增加,且个体差异减小,物种分布更均匀。发酵香菇可不同程度地增加小鼠肠道内有益菌群,如Muribaculaceae、乳杆菌属(Lactobacillus)、Dubosiella、Lachnospiraceae等的定殖,降低螺杆菌属(Helicobacter)、支原体(Mycoplasma)等致病菌的相对丰度,从而改善肠道健康。通过单因素和响应面优化实验,获得乳酸菌发酵香菇调味即食产品的最佳配方为:发酵香菇块81.5%、甜面酱1.0%、豆瓣酱1.5%、白砂糖6.0%、藤椒油3.0%、芝麻2.0%、辣椒油4.0%、姜汁1.0%(均为质量分数)。为乳酸菌发酵技术在香菇深加工中的应用提供了有益参考。 相似文献
12.
微波辅助提取条斑紫菜多糖及其抗氧化性研究 总被引:6,自引:0,他引:6
采用微波辅助提取技术,研究微波功率、处理时间及料液比对条斑紫菜多糖提取率的影响。在单因素试验的基础上,通过正交试验确定最佳提取工艺条件为微波功率180W、微波提取时间8min、料液比为1∶40,在此条件下,条斑紫菜多糖提取率为5.358%。用提取的条斑紫菜多糖作抗氧化剂,在25℃、37℃和60℃的条件下,分别用0.05%和0.10%的条斑紫菜多糖以及0.20%的VC进行抗氧化试验,结果表明,条斑紫菜多糖具有很强的抗氧化活性。 相似文献
13.
以恩施山地薇菜叶为原料,采用水浸提法提取水溶性多糖,考察提取温度、时间、次数、料液比4个因素对提取率的影响,并通过L9(34)正交实验优化提取工艺条件,同时研究了薇菜水溶性多糖对O2-.、.OH体外抗氧化作用。结果表明:提取薇菜叶水溶性多糖最优工艺条件为料液比1:10(g:mL),提取温度100℃,处理2.5h,提取2次,其得率为1.10%。薇菜水溶性多糖对O2-.和.OH有明显的抑制作用,对O2-.的抑制率随浓度的增加而增大,其EC50值为0.767mg.mL-1,对.OH的抑制率在0.2~0.6mg.mL-1浓度范围内随浓度的增加而增大,当多糖浓度为0.600mg.mL-1时,抑制率为64.583%达到最大,以后随浓度的增加抑制率的变化不大。通过对其活性成分多糖的提取工艺研究及其功能性评价,为开发以天然植物为原料的新食品开发奠定理论基础。 相似文献
14.
对闪式提取红树莓总多酚的提取工艺进行研究,在单因素实验的基础上选取了溶剂体积分数、提取电压和提取时间为因素,以红树莓总多酚提取量为响应值,进行Box-Behnken中心组合实验设计,利用响应面分析法对提取条件进行优化,通过测定提取液对DPPH·和·OH清除能力,评价其抗氧化活性。结果表明,树莓总酚在四种溶剂中的提取效果顺序为:乙醇 > 水 > 石油醚 > 氯仿,最佳提取工艺参数为乙醇体积分数48%、提取电压150 V、提取时间为57 s,红树莓总酚提取量为(52.24±0.66) mg/g,此外,提取物对DPPH·清除率达到93.71%±0.70%,对·OH清除率达到84.13%±1.58%。 相似文献
15.
16.
摘要:目的 对羊肚菌多糖(Morchella esculenta polysaccharides,MEP)的提取工艺进行筛选优化,获得最佳工艺和最佳活性组分。方法 采用热水浸提(Hot water extraction,HWE)、柠檬酸提取(Citric acid extraction,CAE)、碱提(Alkaline solution extraction,ASE)和低共融溶剂提取(Deep eutectic solvent extraction,DESs)4种方法,获得4种多糖(MEP-W、MEP-S、MEP-A和MEP-D),通过比较选出最佳方法,采用响应面设计获得最佳工艺,采用乙醇分级获得三个组分MEP30、MEP60和MEP80,通过自由基清除试验(DPPH· 和·OH)和还原力测定评估其抗氧化活性。结果 HWE为最佳方法,最佳提取工艺为:时间3 h,液料比44∶1(mL/g),温度83.6℃,提取得率为(8.13±0.38)%。MEP80在三个组分中清除·OH能力和还原力最强,EC50和RP0.5AU分别为0.44 mg/mL和1.52 mg/mL,高于其前体物MEP-W。结论 热水浸提为最佳方法,MEP80为抗氧化活性的最佳组分,值得进一步研究。 相似文献
17.
目的:以黄精为原料,开发高效协同提取黄精皂苷(Polygonatum sibiricum sponins, PSSs)和多糖(Polygonatum sibiricum polysaccharides, PSPs)的工艺,并考察提取物及其复合物对α-葡萄糖苷酶和α-淀粉酶的抑制活性。方法:采用超声波法辅助复合酶解提取PSSs和PSPs,考察超声料液比、超声时间、超声温度、酶解时间、酶添加量、酶解料液比、热水提取温度及热水提取时间等因素对PSSs、PSPs得率的影响,并利用Box-Behnken试验进行优化。结果:PSSs和PSPs的最佳协同提取工艺条件为超声温度50 ℃,超声时间50 min,超声料液比1∶25 (g/mL),酶解时间2 h,酶添加量3 053 U/g,酶解料液比1∶25 (g/mL),热水提取温度80 ℃,热水提取时间1 h,此条件下,两步提取PSSs总得率为12.22%,PSPs得率为27.07%;PSSs和PSPs对α-葡萄糖苷酶和α-淀粉酶活性均具有抑制作用,且二者复合后仍具有较好的抑制作用。结论:经优化后获得了黄精皂苷和多糖高效协同提取的工艺条件,且与单一组分相比,二者复合后降血糖活性有所提高。 相似文献
18.
生姜多糖类物质的提取及抗氧化活性研究 总被引:2,自引:0,他引:2
目的以生姜为原料,采用超声波辅助法和热水浸提法提取生姜多糖类物质并进行抗氧化活性对比研究。方法经单因素试验结合响应面优化设计考察最优提取工艺参数,同时对2种方法提取的生姜多糖抗氧化活性进行对比分析。结果超声波辅助法提取生姜多糖最佳提取条件为:超声温度48℃,超声功率340W,超声时间21 min,液固比50:1(m L/g),在此条件下多糖得率为6.87%;热水浸提法的最佳提取条件为:温度72℃,时间164 min,液固比40:1(m L/g),在此条件下多糖得率为3.13%。抗氧化活性测定结果表明,超声波辅助法和热水浸提法提取生姜多糖的DPPH自由基清除能力的IC_(50)值分别为0.21 mg/m L和0.42 mg/m L,还原能力分别相当于维生素C的3.14%和0.5%,铁离子螯合能力的IC_(50)值分别为2.17 mg/m L和4.18 mg/m L,超声波辅助法提取的生姜多糖的DPPH自由基清除能力、还原力和金属螯合能力分别是热水浸提法提取的生姜多糖的2倍、6倍和1.9倍。结论生姜多糖具有一定的抗氧化活性,本研究可为生姜多糖的提取提供参考。 相似文献
19.
目的研究灵芝多糖(Ganoderma lucidum polysaccharides,GLP)的最优提取工艺,并研究其抗氧化活性。方法通过单因素和响应面法优化提取工艺参数,获得GLP;将GLP进行乙醇分级得到GLP30、GLP60和GLP80 3个组分;采用还原力、DPPH自由基清除试验和羟自由基清除试验评估GLP及3个组分的抗氧化活性。结果灵芝多糖最优提取条件为:温度86°C,液料比50:1(mL/g),时间142min,实际提取得率为1.71%;抗氧化活性试验结果表明:GLP及GLP30、GLP60和GLP80均具有一定的抗氧化活性,均呈现浓度-活性依赖性,其中GLP80还原力最强,GLP清除DPPH自由基和羟自由基的能力最强。结论响应面法有效优化了GLP的提取,灵芝多糖具有较好的抗氧化活性,值得进一步研究及开发利用。 相似文献
20.
通过Box-Behnken中心组合实验设计,获得了酶辅助提取斑玉蕈多糖的最佳工艺;以DPPH自由基清除率、还原力、羟基自由基清除率为指标,评价了斑玉蕈多糖的抗氧化活性。结果表明,酶辅助提取斑玉蕈多糖的最佳工艺条件为复合酶(木瓜蛋白酶和纤维素酶按1∶1质量比例配合)添加量0.9%、酶解pH5.4、酶解温度55.6℃、提取时间2.8h,在此条件下多糖得率为4.68%。斑玉蕈多糖具有较好的抗氧化活性,在一定范围内,其抗氧化能力与多糖质量浓度呈线性正相关,斑玉蕈多糖清除DPPH和羟基自由基的IC50值分别为78.5μg/mL和170.5μg/mL。 相似文献