首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用三因子二次回归正交旋转组合试验设计和响应面分析法,对树莓变温压差膨化干燥的优化工艺进行研究。探讨膨化温度、真空干燥温度、真空干燥时间3个工艺参数对膨化树莓色泽、含水率、脆度和复水比的影响。结果表明:树莓膨化最佳生产工艺为,预干燥时间90 min、膨化温度97℃、停滞时间5 min、压力差0.1MPa、真空干燥温度69℃、真空干燥时间136 min。此工艺制得的树莓膨化产品a*值为12.24,含水率为7.80%,脆度为8个,复水比为2.39。  相似文献   

2.
为降低香菇采后腐烂变质导致的经济损失,基于瞬时压差膨化技术,开发了一种非油炸香菇脆。研究了渗透脱水(osmotic dehydration,OD)预处理工艺顺序、渗透剂种类及质量分数(质量分数0、10%、20%、30%、40%麦芽糊精、10%乳清分离蛋白、20%麦芽糊精+10%乳清分离蛋白复合渗透剂)对香菇脆平均干燥速率、总色差、膨化度、复水比、硬度和脆度的影响。采用低场核磁共振技术,探究了OD预处理对香菇水分组成及状态分布的影响。OD工艺顺序研究表明:相比于热泵干燥前OD预处理,热泵干燥后OD预处理可显著提高香菇脆膨化度、复水比、脆度,降低总色差(P<0.05)。渗透剂种类及质量分数研究表明:相比于对照组,OD预处理可显著提高香菇脆膨化度、复水比(P<0.05),但对平均干燥速率、总色差、硬度和脆度的影响则取决于OD溶液组成。香菇热泵干燥至湿基含水率70%后,先采用20%麦芽糊精+10%乳清分离蛋白渗透预处理,再继续热泵干燥至湿基含水率35%±2%,预干燥后的香菇均湿后进行瞬时压差膨化得到的香菇脆品质较好。低场核磁共振技术研究表明:香菇OD预处理后,横向弛豫时间T2向左偏移,而且随着OD溶液溶质质量分数增加偏移幅度增大;然而自由水占比降低,结合水与不易流动水占比增加,热泵干燥后,除了30%、40%麦芽糊精预处理外,香菇主要以弱结合水和不易流动水状态存在,而自由水所占比例很低(0.41%~4.67%)。与对照组相比,热泵干燥后,香菇自由水(除了10%乳清分离蛋白预处理外)和不易流动水所占比例显著降低,但弱结合水比例显著增加(P<0.05)。Pearson相关性分析表明:相比于热泵干燥,OD预处理对瞬时压差膨化香菇脆品质影响更大,而且与低场核磁共振弛豫参数密切相关。香菇脆膨化动力的产生主要取决于不易流动水和结合水尤其是弱结合水,而与自由水无关。研究旨在为非油炸香菇脆瞬时压差膨化技术提供理论依据和技术参考。  相似文献   

3.
为了优化冬枣变温压差膨化干燥的最佳工艺,在单因素的基础上,采用三因子二次回归正交旋转组合设计,分析预干燥时间、膨化温度和抽空时间3个因素对产品硬度脆度、色泽△E值和含水率这4个指标的影响及其交互作用.根据试验数据得到描述这4个指标的二次回归模型,并进行响应面分析.采用因子分析法确定4个评价指标的权重,并通过综合评分得出冬枣优化膨化工艺参数.结果表明:预干燥时闻、膨化温度和抽空时间对产品硬度脆度、色泽△E值和含水率影响显著,三因子间的交互作用显著;冬枣变温压差膨化干燥工艺是:预干燥时间5.56~6.44 h,膨化温度90.78~101.04℃,抽空时间1.56~2.44h.  相似文献   

4.
为了确定最佳的脐橙变温压差膨化干燥工艺参数,应用单因素试验和响应面法对脐橙变温压差膨化干燥工艺进行优化。用单因素试验对脐橙变温压差膨化干燥工艺进行初步优化,采用3因子二次回归正交组合设计,进一步优化了脐橙变温压差膨化工艺,分析了预干燥含水率、膨化温度和抽空温度三因素对脐橙脆片含水率、脆度和色泽的影响。在此基础上,构建3个指标的三元二次回归方程,并进行响应面分析,得出脐橙切片变温压差膨化最佳工艺条件为:切片厚度5 mm、预干燥含水率为31%、膨化温度78℃、抽空温度为62℃、抽空时间为90min、膨化压力差为0.1 MPa。  相似文献   

5.
响应面法优化番木瓜变温压差膨化干燥工艺   总被引:2,自引:0,他引:2  
优化对番木瓜变温压差膨化干燥工艺,基于响应面的中心组合设计方法,分析预干燥时间、膨化温度、抽
空时间3 个因素对番木瓜膨化产品含水率、硬度、脆度、色泽和复水比5 个指标的影响。采用因子分析法确定5 个
指标的权重,通过综合评分得到番木瓜变温压差膨化干燥的最佳工艺参数范围。结果表明:预干燥时间、膨化温
度、抽空时间三因素对产品的含水率、硬度、脆度、色泽和复水比均有显著影响(P<0.05),且三因素交互作用
对产品品质影响显著;番木瓜变温压差膨化最优干燥参数为:预干燥时间4.96~6.00 h、膨化温度80.00~97.23 ℃、
抽空时间2.02~3.00 h。  相似文献   

6.
为了对网纹甜瓜变温压差膨化干燥工艺进行优化,采用单因素实验设计,分析预干燥时间、膨化温度和抽空时间3个变量对产品硬度、脆度、含水量和色差的影响,并在此基础上通过响应面实验优化工艺参数。由实验数据推导出描述4个指标的二次回归模型,并对变量进行响应面分析,得出优化膨化干燥工艺条件为:预干燥时间为207 min,膨化温度为84.5℃,抽空时间为64.5 min,在此条件下膨化产品的硬度为412 g、脆度值为4、含水量为10.28%、色差为8.4,拟合度较好,产品品质优异。  相似文献   

7.
番木瓜真空冷冻联合变温压差膨化干燥工艺优化   总被引:2,自引:0,他引:2  
为优化番木瓜真空冷冻联合变温压差膨化干燥工艺,采用响应面的中心组合设计方法,研究膨化温度、抽空温度、抽空时间对番木瓜膨化产品含水率、硬度、脆度、色泽和复水比的影响。采用因子分析法对含水率、硬度、脆度、色泽以及复水比进行降维分析,并给得出的因子赋予权重,再计算出产品的综合评分,获得番木瓜真空冷冻联合变温压差膨化干燥的最佳工艺参数范围。将最佳工艺参数范围内干燥得到的番木瓜片与真空冷冻干燥进行对比分析,结果表明:膨化温度、抽空温度、抽空时间对产品的含水率、硬度、脆度、色泽和复水比均有显著影响(P0.05),3因子之间的交互作用显著;番木瓜变温压差膨化干燥最优工艺参数范围为:膨化温度87.46~100.00℃,抽空温度72.42~80.00℃,抽空时间3.64~4.00 h。真空冷冻联合变温压差膨化干燥可以获得品质较好的番木瓜片。  相似文献   

8.
为优化气流膨化干燥黑毛豆仁的工艺,采用三因子二次正交旋转组合设计,分析了预干燥后水分含量、膨化温度和抽空干燥时间对产品的水分含量、硬度、脆度和a*值的影响,并进行响应曲面分析结果表明:预干燥后水分含量、膨化温度、抽空干燥时间对膨化黑毛豆仁的各指标影响显著,黑毛豆仁气流膨化的最佳工艺为:预干燥后水分含量30.75%,膨化温度100℃,抽空干燥时间98min.  相似文献   

9.
本文研究了真空冷冻干燥预留水分含量、膨化温度、抽空温度、抽空时间、膨化次数对菠萝蜜的含水率、色泽、硬度、脆度、复水性等品质指标的影响。在单因素试验基础上,选择影响最为显著的3个因素:膨化温度、抽空温度、抽空时间作为变量,选取色泽b值、脆度、硬度、含水率作为响应值进行响应面优化试验设计。采用频数分析法对工艺参数进行优化分析,最终确定菠萝蜜真空冷冻-变温压差膨化干燥适宜的工艺参数为:膨化温度87.73~91.24℃,抽空温度58.12~61.31℃,抽空时间2.43~2.77 h。  相似文献   

10.
为了确定香蕉变温压差膨化干燥最佳工艺条件,采用三因子二次回归正交旋转组合设计,分析膨化温度、膨化压力差和抽空温度3因素对产品L*值、脆度、硬度和含水率4个指标的影响及其交互作用。根据试验数据得到4个指标的二次回归模型,并进行了响应面分析,采用因子分析法确定4个评价指标的权重,通过综合评分得出了香蕉优化膨化工艺参数。结果表明:膨化温度、膨化压力差和抽空温度对产品的L*值、脆度、硬度和含水率影响显著,三因子间的交互作用不显著;最佳工艺范围是:膨化温度86-91℃;膨化压力差0.16-0.24MPa;抽空温度83-87℃。  相似文献   

11.
以新疆红苹果为原料,研究其低温气流膨化干燥工艺。采用单因素试验分析切片厚度、预干燥含水率、膨化温度、抽空温度、抽空时间和膨化压力差对红苹果低温气流膨化干燥产品的影响。在此基础上,利用响应面法对原料预干燥含水率、膨化温度、抽空温度进行优化,推导出描述3个指标的二次回归模型。试验结果表明,新疆红苹果低温气流膨化干燥工艺条件为:切片厚度3 mm,预干燥含水率35.18%,膨化温度73.80℃,抽空温度61.21℃,抽空时间120 min,停滞时间5 min,膨化压力差0.2 MPa。在此条件下,得到产品含水率5.32%,硬度874.37 g,L*值43.43。  相似文献   

12.
为了对香菇柄变温压差膨化干燥工艺进行优化,采用响应面的中心组合设计方法,分析膨化温度(X_1)、抽空温度(X_2)和抽空时间(X_3)三个因素对产品含水率(Y_1)、色泽(Y_2)和膨化度(Y_3)的影响,根据实验数据推出描述三个指标的二次回归模型,并对变量进行响应面分析,得出优化膨化干燥工艺:膨化温度86℃,抽空温度69℃,抽空时间2 h。此条件下,膨化干燥的香菇柄的含水率为3.83%,色差值为42.29,膨化度为0.685。与热风干燥相比,变温压差膨化干燥产品膨化效果好,该技术可以应用于香菇柄的膨化产品。  相似文献   

13.
冬枣变温压差膨化干燥工艺的研究   总被引:4,自引:2,他引:2  
应用变温压差膨化干燥技术制备脱水冬枣.探讨冬枣预干燥含水率、膨化温度、抽空干燥温度、抽空干燥时间对冬枣膨化效果的影响.结果表明,冬枣较佳的膨化工艺参数为:预干燥水分为30%,膨化温度为105 ℃,抽空干燥温度为75 ℃,抽空干燥时间为120 min.在此工艺条件膨化冬枣膨化度为2.75 mL/g,产品具有良好的色泽和酥脆性.  相似文献   

14.
响应面法优化桃变温压差膨化干燥工艺   总被引:2,自引:0,他引:2  
通过单因素试验选取预干燥时间、膨化温度和抽空时间为二次正交旋转组合试验设计的自变量,产品硬度、脆度、水分含量、色泽、膨化度、复水比等指标作为试验的响应值,利用响应面法分析自变量对桃变温压差膨化干燥产品品质的影响,并对其工艺参数进行组合优化。结果表明,桃变温压差膨化干燥的适宜工艺条件是:原料预干燥时间3.08~3.68 h,膨化温度77.80~86.17℃,抽空时间2.23~2.50 h,在此条件下所得桃产品口感酥脆、品质优良。  相似文献   

15.
以凯特芒果为原料,采用变温压差膨化干燥技术,探讨了切条厚度、预干燥后水分含量、膨化温度、膨化压力差、抽空温度、抽空时间和停滞时间对芒果膨化产品的硬度、脆度、色泽、膨化度和含水率的影响.结果表明:芒果膨化的最佳厚度为6 mm;预干燥后水分含量、膨化温度和抽空时间是影响芒果膨化产品品质的关键因素;预干燥后,含水量在61.7...  相似文献   

16.
卢亚婷  罗仓学  史超 《食品科学》2014,35(21):129-132
通过单因素试验和对比实验,研究了冷冻处理、预干燥处理、高压处理结合压差膨化技术对鲜枣膨化效果的影响。结果表明:1)冷冻处理温度为-18 ℃时,处理240 min的大枣脆度较好;高压处理压强为180 MPa,5 min产品的脆度较好;预干燥处理中不经过干燥处理的产品脆度和亮度较好;2)-18 ℃条件下冷冻处理240 min之后膨化,膨化温度为85 ℃,0.2 MPa时色差L*值和产品的脆度较好。  相似文献   

17.
变温压差膨化干燥香菇脆片的工艺优化   总被引:1,自引:0,他引:1  
为研究变温压差膨化技术在菌菇类产品深加工中的可行性,开发一种新型的即食类香菇休闲产品-香菇脆片。以香菇为原料,在停滞时间、膨化压力差、膨化温度、抽空温度、抽空时间、切片厚度6个单因素试验基础上,采用响应面分析法建立多元统计回归模型,对变温压差膨化干燥香菇脆片进行工艺优化。研究表明,变温压差膨化干燥香菇脆片的最佳工艺参数为:停滞时间12 min、膨化压力差0.2 MPa、膨化温度90℃、抽空时间68 min、抽空温度80℃、切片厚度7 mm。在此最佳工艺条件下进行验证得到变温压差膨化干燥香菇脆片的脆度814.73±19.80 g,硬度1962.76±33.55 g,感官评分97.10±2.40,与预测值极为接近,说明采用此模型对气流膨化香菇脆片进行优化具有可行性。  相似文献   

18.
在热风干燥特性研究基础上,探讨热风预留水分含量、膨化温度、抽真空温度、抽真空时间、膨化次数5个因素对热风—变温压差膨化干燥菠萝蜜产品的色泽、脆度、硬度、复水性的影响。结果表明:菠萝蜜热风-变温压差膨化干燥的最优工艺条件为:热风预干燥温度60℃,热风预留水分含量27.53%,膨化温度90℃,抽真空温度60℃,抽真空时间2.5h,膨化次数5次,停滞时间5min,真空度-0.098 MPa。在该膨化条件下,菠萝蜜产品的ΔE值为3.30±0.58,L值为54.19±0.13,b值为28.95±0.16,硬度值为4 830.82±734.43,脆度值为17.45±4.34,复水比为2.42±0.13。  相似文献   

19.
冬枣变温压差膨化干燥工艺研究   总被引:1,自引:0,他引:1  
以冬枣为原料,采用变温压差膨化干燥技术,探讨了预干燥时间、抽空时间、膨化温度、抽空温度、停滞时间和膨化压力对冬枣膨化产品硬度、脆度、色泽和水分含量的影响。结果表明:膨化温度、抽空温度和抽空时间是影响产品膨化质量的关键因素;冬枣预干燥6h后,膨化温度85℃,抽空温度60℃,抽空时间2h为较适合工艺参数;停滞时间和膨化压力差在一定范围内对膨化产品的质量影响不大,实验确定停滞时间15min,膨化压力差0.2MPa为较适合工艺参数。  相似文献   

20.
利用渗入西洋参片的高压CO_2作为动力源进行低温气流膨化干燥。探究预处理方式、预干燥后含水率、膨化压差、膨化温度、抽真空时间对膨化度、复水比、脆度、硬度、膨化后含水率的影响。通过正交试验得出最佳工艺参数:膨化压差2.6 MPa,膨化温度80℃,抽真空时间2 h。经CO_2气流膨化处理,西洋参脆片要比传统工艺生产的脆度大,复水比大,硬度小,含水率小,更易于营养物质的吸收与储存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号