首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The cellular mechanisms that mediate the cardiodepressant effects of intravenous anesthetic agents remain undefined. The objective of this study was to elucidate the direct effects of propofol and ketamine on cardiac excitation-contraction coupling by simultaneously measuring intracellular calcium concentration ([Ca2+]i) and shortening in individual, field-stimulated ventricular myocytes. METHODS: Freshly isolated rat ventricular myocytes were loaded with the Ca2+ indicator, fura-2, and placed on the stage of an inverted fluorescence microscope in a temperature-regulated bath. [Ca2+]i and myocyte shortening (video edge detection) were monitored simultaneously in individual cells that were field-stimulated at 0.3 Hz. RESULTS: Baseline [Ca2+]i (mean +/- SEM) was 80 +/- 12 nM, and resting cell length was 112 +/- 2 microm. Field stimulation increased [Ca2+]i to 350 +/- 23 nM, and the myocytes shortened by 10% of diastolic cell length. Both intravenous anesthetic agents caused dose-dependent decreases in peak [Ca2+]i and shortening. At 300 microM, propofol prolonged time to peak concentration and time to 50% recovery for [Ca2+]i and shortening. In contrast, changes in time to peak concentration and time to 50% recovery in response to ketamine were observed only at the highest concentrations. Neither agent altered the amount of Ca2+ released from intracellular stores in response to caffeine. Propofol but not ketamine, however, caused a leftward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. CONCLUSIONS: These results indicate that both intravenous anesthetic agents have a direct negative inotropic effect, which is mediated by a decrease in the availability of [Ca2+]i. Propofol but not ketamine may also alter sarcoplasmic reticulum Ca2+ handling and increase myofilament Ca2+ sensitivity. The effects of propofol and ketamine are primarily apparent at supraclinical concentrations, however.  相似文献   

2.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

3.
Because glycolysis is thought to be important for maintenance of cellular ion homeostasis, the aim of the present study was to examine the role of glycolysis in the control of cytosolic calcium ([Ca2+]i) and cell shortening during conditions of increased calcium influx. Thus, [Ca2+]i and unloaded cell shortening were measured in fura-2/AM loaded rat ventricular myocytes. All cells were superfused with Tyrode's solution containing glucose and pyruvate (to preserve oxidative metabolism), and glycolysis was inhibited by iodoacetate (IAA, 100 microM). Calcium influx was increased, secondary to an increase in intracellular sodium, by addition of veratrine (1 microgram/ml), or directly by either elevating [Ca2+]o from 2 to 5 mM or by exposing the cells to isoproterenol (1 to 100 nm). Veratrine exposure caused a time-dependent increase in both diastolic and systolic [Ca2+]i that resulted in cellular calcium overload and hypercontraction. The rate of increase in [Ca2+]i was more rapid in IAA-treated than in untreated myocytes, leading to a 13+/-3 v 5+/-2% increase (P<0.05) in diastolic [Ca2+]i after 5 min of exposure. The corresponding increases in systolic [Ca2+]i were 43+/-6 and 24+/-5% (P<0.05). Elevated [Ca2+]o resulted in increased [Ca2+]i transient amplitudes and cell shortening. These responses were each attenuated by inhibiting glycolysis, so that the increase was 38+/-5 v 68+/-9% ([Ca2+]i transient amplitude, P<0.05) and 41+/-11 v 91+/-18% (cell shortening, P<0.05). Inhibition of glycolysis did not, however, affect the increase in calcium transient or cell shortening during addition of isoproterenol. We conclude that glycolysis plays an essential role in the maintenance of intracellular calcium homeostasis during severe calcium overload. Glycolysis was also essential for signalling the inotropic effect that accompanied elevation in extracellular calcium, while the changes in intracellular calcium following administration of isoproterenol were not influenced by glycolysis in the present model.  相似文献   

4.
BACKGROUND: We compared the effects of the nitric oxide donor sodium nitroprusside (SNP) on intracellular pH (pHi), intracellular calcium concentration ([Ca2+]i) transients, and cell contraction in hypertrophied adult ventricular myocytes from aortic-banded rats and age-matched controls. METHODS AND RESULTS: pHi was measured in individual myocytes with SNARF-1, and [Ca2+]i transients were measured with indo 1 simultaneously with cell motion. Experiments were performed at 37 degrees C in myocytes paced at 0.5 Hz in HEPES-buffered solution (extracellular pH = 7.40). At baseline, calibrated pHi, diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10(-6) mol/L SNP caused a decrease in the amplitude of cell contraction (72 +/- 7% of baseline, P < .05) that was associated with a decrease in pHi (-0.10 +/- 0.03 U, P < .05) with no change in peak systolic [Ca2+]i. In contrast, in the hypertrophied myocytes exposure to SNP did not decrease the amplitude of cell contraction or cause intracellular acidification (-0.01 +/- 0.01 U, NS). The cGMP analogue 8-bromo-cGMP depressed cell shortening and pHi in the control myocytes but failed to modify cell contraction or pHi in the hypertrophied cells. To examine the effects of SNP on Na(+)-H+ exchange during recovery from intracellular acidosis, cells were exposed to a pulse and washout of NH4Cl. SNP significantly depressed the rate of recovery from intracellular acidosis in the control cells compared with the rate in hypertrophied cells. CONCLUSIONS: SNP and 8-bromo-cGMP cause a negative inotropic effect and depress the rate of recovery from intracellular acidification that is mediated by Na(+)-H+ exchange in normal adult rat myocytes. In contrast, SNP and 8-bromo-cGMP do not modify cell contraction or pHi in hypertrophied myocytes.  相似文献   

5.
1. The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10(-1) M), NO (10(-10) - 10(-6) M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry. 2. Zaprinast (10(-4) M), increased NO-stimulated levels of cyclic GMP by 3-20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast. 3. The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10(-5) M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10(-10) - 10(-8) M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10(-7) - 10(-6) M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10(-7) - 10(-5) M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO. 4. Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO.  相似文献   

6.
We used the increase in cytosolic Ca2+ levels, [Ca2+]i, as a way to characterize PAF (platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) receptors in human platelets and rat and human macrophages. [Ca2+] was measured by means of the fluorescent probe fura-2/acetoxymethylester. PAF recognized heterogeneous receptors in human macrophages only (curve slope <1). The PAF antagonist SCH 37370 (1-acetyl-4(8-chloro-5,6-dihydro-11H-benzo[5.6]cyclohepta[1,2-b]pyridine -11-ylidine)piperidine) abolished [Ca2+]i elevation in human platelets, while in rat and human macrophages the maximal inhibition was 76% and 85%, respectively. On the contrary, the antagonist WEB 2086 (3-[4-(2-chlorophenyl)-9-methyl-6Hthieno[3,2-f] [1,2,4]triazolo-[4,3-a] [1,4]-diazepin-2-yl]-1-(4-morpholiny)-1-propanon, apafant) totally inhibited the effect of PAF in both platelets and macrophages. The WEB 2086 concentration-response curves had a slope <1 in the three cell types, indicating interaction with heterogeneous receptors. Accordingly, 3H-WEB 2086 bound to two different classes of sites. Both phases of [Ca2+]i elevation (influx or release) were equally affected by the antagonists. These data support the notions that: 1) PAF receptors are heterogeneous; 2) the two antagonists have a different selectivity toward the receptor subtypes: WEB 2086 recognizes two different receptors both in platelets and in macrophages, while SCH 37370 does not discriminate between receptor subtypes in platelets, and only interacts with one subtype in macrophages; and 3) both SCH 37370 and WEB 2086 display different potencies in rat and human macrophages.  相似文献   

7.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

8.
Lead characteristically perturbs processes linked to the calcium messenger system. This study was undertaken to determine the role of PKC in the Pb2+ induced rise of [Ca2+]i. [Ca2+]i was measured using the divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy) ethane N, N,N',N'-tetraacetic acid (5F-BAPTA) and 19F-NMR in the osteoblast cell line, ROS 17/2.8. Treatment of cells with Pb2+ at 1 and 5 microM produced a rise in [Ca2+]i from a basal level of 125 nM to 170 nM and 230 nM, respectively, while treatment with phorbol 12-myristate 13-acetate (PMA) (10 microM), an activator of PKC, produced a rise in [Ca2+]i to 210 nM. Pretreatment with calphostin C, a potent and highly selective inhibitor of PKC activation failed to produce a change in basal [Ca2+]i and prevented any rise in [Ca2+]i in response to Pb2+. To determine whether Pb2+ acts directly on PKC, we measured the Pb2(+)-dependent activation of phosphatidylserine/diolein-dependent incorporation of 32P from ATP into histone and endogenous TCA precipitable proteins in the 100,000 X g supernatant from homogenized ROS 17/2.8 cells. The free concentrations of Pb2+ and Ca2+ were set using 5F-BAPTA; and [Ca2+] and [Pb2+] in the PKC reaction mixtures were confirmed by 19F-NMR. We found that Pb2+ activates PKC in the range of 10(-11)-10(-7) M, with an activation constant of 1.1 X 10(-10) M, whereas Ca2+ activates PKC in the range from 10(-8) to 10(-3) M, with an activation constant of 3.6 X 10(-7) M. These data suggest that Pb2+ activates PKC in ROS 17/2.8 cells and that Pb2+ activation of PKC mediates the documented rise in [Ca2+]i and, perhaps, other toxic effects of Pb2+.  相似文献   

9.
PURPOSE: To investigate the effects of bradykinin (BK) on the outflow facility (C) of human and bovine perfused anterior segments, the [Ca2+]i of cultured bovine trabecular meshwork (BTM) cells, and the area and major axis of BTM cells. METHODS: Cellular studies were performed using first- through third-passage cultures of BTM cells. For [Ca2+]i and shape change assessment, BTM cells were loaded with fura-2 acetoxymethyl ester, and individual fluorescence images were analyzed after the different experimental manipulations. C studies were performed in vitro using human and bovine anterior segments perfused at constant pressure. RESULTS: Bradykinin at 10(-6) M elicited a [Ca2+]i increase of 8 to 10 times the basal levels in 90% of the studied cells. From the responder cells, 60% elicited a 15%+/-1% reduction of the initial cell area, and 37% showed a 13%+/-2% reduction of their major axis. Bradykinin failed to induce any effect in the presence of the BK-B2 receptor antagonist HOE-140. Zero [Ca2+]o the depletion of intracellular stores with thapsigargin, or the presence of the calmodulin antagonist W13, decreased the BK response significantly (P < 0.001; P < 0.001; and P < 0.05). A second application of BK elicited a significantly lower (P < 0.001) response than the previous one. Perfusion with 10(-6) M BK decreased CD, calculated as the area under the curve, by 13%+/-4% (P < 0.05) in human anterior segments and 12%+/-4% (P < 0.05) in bovine anterior segments. The presence of 10(-6) M HOE-140, a BK-B2 receptor antagonist, completely blocked the decrease in C after perfusion with BK. CONCLUSIONS: The C of human and bovine trabecular meshwork (perfused anterior segments) is decreased by BK, acting through BK-B2 receptors. Primary cultured BTM cells respond to BK stimulation by increasing their [Ca2+]i by mobilization of extracellular and intracellular Ca2+. Moreover, these cells are reduced in area and their major axis shortened after the [Ca2+]i peak elicited by BK through BK-B2 receptors. The [Ca2+]i mobilization and shape changes are calmodulin dependent. Taking into account the [Ca2+]i mobilization, the BTM shape changes, the decrease of C, and the temporal sequence of these parameters, a contraction of trabecular meshwork cells related to the functional role of trabecular meshwork is discussed.  相似文献   

10.
BACKGROUND: Recombinant human growth hormone (GH) improves in vivo cardiac function in rats with postinfarction heart failure (MI). We examined the effects of growth hormone (14 days of 3.5 mg. kg-1. d-1 begun 4 weeks after MI) on contractile reserve in left ventricular myocytes from rats with chronic postinfarction heart failure. METHODS AND RESULTS: Cell shortening and [Ca2+]i were measured with the indicator fluo 3 in myocytes from MI, MI+GH, control, and normal animals treated with GH (C+GH) under stimulation at 0.5 Hz at 37 degrees C. Cell length was similar in MI and MI+GH rats (150+/-5 and 157+/-5 microm) and was greater in these groups than in the control and C+GH groups (140+/-4 and 139+/-4 microm, P<0.05). At baseline perfusate calcium of 1.2 mmol/L, myocyte fractional shortening and [Ca2+]i transients were similar among the 4 groups. We then assessed contractile reserve by measuring the increase in myocyte fractional shortening in the presence of high-perfusate calcium of 3.5 mmol/L. In the control and C+GH groups, myocyte fractional shortening and peak systolic [Ca2+]i were similarly increased in the presence of high-perfusate calcium. In the presence of high-perfusate calcium, both myocyte fractional shortening and peak systolic [Ca2+]i were depressed in the MI compared with the control groups. In contrast, myocyte fractional shortening (14.1+/-.9% versus 11.1+/-.9%, P<0.05) and peak systolic [Ca2+]i (647+/-43 versus 509+/-37 nmol/L, P<0.05) were significantly higher in MI+GH than in MI rats and were comparable to controls. Left ventricular myocyte expression of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA-2) and left ventricular SERCA-2 protein levels were increased in MI+GH compared with MI rats. CONCLUSIONS: Calcium-dependent contractile reserve is depressed in myocytes from rats with postinfarction heart failure. Long-term growth hormone therapy increases contractile reserve by restoring normal augmentation of systolic [Ca2+]i in myocytes from rats with postinfarction heart failure.  相似文献   

11.
The ability to respond to bradykinin (BK) by a bronchospasm is one of the most intriguing characteristics observed in asthmatic patients but not in healthy subjects. The molecular basis of this sensitivity is not yet known. Therefore, we studied the effect of BK, and its putative modulation by tumor necrosis factor alpha (TNF alpha), on cytosolic free Ca2+ concentration ([Ca2+]i) in fura-2-loaded tracheal smooth muscle cells in culture. BK induced a concentration-dependent rise in [Ca2+]i at concentrations between 10(-13) and 10(-11) M which was mediated via BK receptors of the B2 subtype. The net increase in [Ca2+]i induced by 10(-12)M BK was 478 +/- 52 nM. Pre-treatment of the cells with TNF alpha (10 ng/ml) for 24 h significantly potentiated this net increase in [Ca2+]i to 956 +/- 154 nM. The presence of anti-TNF alpha antibodies inhibited this potentiation. These results show that TNF alpha is able to interact with airway smooth muscle cells which suggests the existence of receptors for TNF alpha on these cells. The study, in vivo, of such interaction should help to further elucidate the mechanisms involved in airway hyperresponsiveness.  相似文献   

12.
The effects of 2,3-butanedione monoxime (BDM) were examined using rat ventricular myocytes loaded with Indo-1 to measure the intracellular Ca concentration ([Ca2+]i). BDM (10 mM) produced a transient increase of the systolic Ca transient with no steady-state effect on its magnitude. This transient increase was more marked when BDM was applied after having decreased the external Ca concentration from 1 to 0.1 mM. There was a transient increase of resting [Ca2+]i in both quiescent and electrically stimulated cells. Prior application of BDM decreased the rise of [Ca2+]i produced by caffeine. In voltage-clamped cells the rise of [Ca2+]i produced by BDM was accompanied by a transient inward current attributed to the electrogenic Na-Ca exchange. The amount of Ca lost from the cell upon application of 10 mM BDM could be estimated either from the integral of the BDM-evoked current or from the reduction of the integral of a caffeine-evoked current and corresponded to about 50% of the sarcoplasmic reticulum (s.r.) Ca content. The decrease of s.r. Ca content and the transient potentiation of the systolic Ca transient suggest that BDM acts by stimulating Ca-induced Ca release. These effects must be allowed for when using BDM.  相似文献   

13.
The effects of acetylcholine (ACh) and histamine (His) on the membrane potential and current were examined in JR-1 cells, a mucin-producing epithelial cell line derived from human gastric signet ring cell carcinoma. The tight-seal, whole cell clamp technique was used. The resting membrane potential, the input resistance, and the capacitance of the cells were approximately -12 mV, 1.4 G ohms, and 50 pF, respectively. Under the voltage-clamp condition, no voltage-dependent currents were evoked. ACh or His added to the bathing solution hyperpolarized the membrane by activating a time- and voltage-independent K+ current. The ACh-induced hyperpolarization and K+ current persisted, while the His response desensitized quickly (< 1 min). These effects of ACh and His were mediated predominantly by m3-muscarinic and H1-His receptors, respectively. The K+ current induced by ACh and His was inhibited by charybdotoxin, suggesting that it is a Ca(2+)-activated K+ channel current (IK.Ca). The measurement of intracellular Ca2+ ([Ca2+]i) using Indo-1 revealed that both agents increased [Ca2+]i with similar time courses as they increased IK.Ca. When EGTA in the pipette solution was increased from 0.15 to 10 mM, the induction of IK.Ca by ACh and His was abolished. Thus, both ACh and His activate IK.Ca by increasing [Ca2+]i in JR-1 cells. In the Ca(2+)-free bathing solution (0.15 mM EGTA in the pipette), ACh evoked IK.Ca transiently. Addition of Ca2+ (1.8 mM) to the bath immediately restored the sustained IK.Ca. These results suggest that the ACh response is due to at least two different mechanisms; i.e., the Ca2+ release-related initial transient activation and the Ca2+ influx-related sustained activation of IK.Ca. Probably because of desensitization, the Ca2+ influx-related component of the His response could not be identified. Intracellularly applied inositol 1,4,5-trisphosphate (IP3), with and without inositol 1,3,4,5-tetrakisphosphate (IP4), mimicked the ACh response. IP4 alone did not affect the membrane current. Under the steady effect of IP3 or IP3 plus IP4, neither ACh nor His further evoked IK.Ca. Intracellular application of heparin or of the monoclonal antibody against the IP3 receptor, mAb18A10, inhibited the ACh and His responses in a concentration-dependent fashion. Neomycin, a phospholipase C (PLC) inhibitor, also inhibited the agonist-induced response in a concentration-dependent fashion. Although neither pertussis toxin (PTX) nor N-ethylmaleimide affected the ACh or His activation of IK,Ca, GDP beta S attenuated and GTP gamma S enhanced the agonist response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The lysosphingolipids sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPPC) reportedly increase free cytosolic Ca2+ concentration ([Ca2+]i) in a variety of cell types, apparently by activating G protein-coupled plasma membrane receptors. We investigated whether and how sphingolipids modulate Ca2+ homeostasis in the insulinoma cell line RINm5F. The addition of SPPC and glucopsychosine (GPS) did not affect basal [Ca2+]i but inhibited the KCl (30 mM)-induced increase in [Ca2+]i in a pertussis toxin-insensitive and concentration-dependent manner (EC50 approximately 5 micro M). Similar inhibitory effects were observed with dihydro-SPPC and psychosine, whereas SPP and various N-acylated sphingolipids (at 10 micro M each) had little or no effect on the KCl-induced [Ca2+]i increase. Because in RINm5F cells the primary pathway for depolarization-induced [Ca2+]i increase are L-type Ca2+ channels, we studied whether sphingolipids reduce L-type Ca2+ current (ICa.L). When added to the bath, GPS and SPPC, but not SPP (10 micro M each), rapidly reduced maximal ICa.L by approximately 35%, similar to the alpha2-adrenoceptor agonist clonidine (30 micro M). However, when applied internally, GPS had no effect on ICa. L. When the electrode solution contained the stable GDP analog guanosine-5'-O-(2-thio)diphosphate (1 and 10 mM), the inhibitory effect of GPS was abolished. In conclusion, a novel cellular action of lysosphingolipids is observed in RINm5F cells (i.e., a guanine nucleotide-sensitive inhibition of L-type Ca2+ currents). The pharmacological profile of this inhibition is unique and unlike any known lysosphingolipid receptor-mediated action.  相似文献   

15.
The direct inotropic effect of angiotensin II on the myocardium is still controversial and little information exists as to its potential modification by heart disorders. Therefore, this study performed simultaneous measurements of isometric force and intracellular Ca2+ concentrations ([Ca2+]i) in left ventricular papillary muscles from sham-operated and aortic-banded rats at 10 weeks post-surgery. Angiotensin II (10(-6) M) induced a reduction of peak systolic [Ca2+]i (0.56 +/- 0.03 to 0.48 +/- 0.04 microM; P<0.05) and a parallel but insignificant diminution of developed tension (10.5 +/- 1.3 to 9.6 +/- 0.8 mN/mm2) in normal papillary muscles from sham-operated animals. Hypertrophied papillary muscles from aortic-banded rats demonstrated a significant decline in both peak systolic [Ca2+]i (0.51 +/- 0.02 to 0.44 +/- 0.01 microM; P<0.05) and developed tension (8.4 +/- 1.1 to 6.8 +/- 1.7 mN/mm2; P<0.05) after addition of angiotensin II. The time courses of the mechanical contraction and the intracellular Ca2+ signal were prolonged by angiotension II in both groups. Isoproterenol dose-dependently increased developed tension and peak systolic [Ca2+]i in papillary muscles from sham-operated rats. In contrast, the positive inotropic response to isoproterenol was markedly reduced in hypertrophied muscles despite a seemingly unimpaired increase in peak systolic [Ca2+]i. Pretreatment with angiotensin II (10(-6) M) resulted in a significant attenuation of the systolic [Ca2+]i response to isoproterenol stimulation in both normal and hypertrophied papillary muscles. Neither the bradykinin B2 antagonist icatibent (10(-6) M) nor the nitric oxide (NO) inhibitor L-NMMA (10(-6) M) abolished the depressant effects of angiotension II. Thus, ANG II induces a parallel decline of the mechanical performance and Ca2+ availability in rat myocardium. These effects are more distinct in hypertrophied than in normal muscle and become accentuated during beta-adrenergic stimulation. The underlying mechanism is not associated with the NO pathway but might involve a negative functional coupling between the angiotensin and beta-adrenergic-receptor complex.  相似文献   

16.
1. The Ca2+ buffering function of sarcoplasmic reticulum (SR) in the resting state of arteries from spontaneously hypertensive rats (SHR) was examined. Differences in the effects of ryanodine that removes the function of SR, on tension and cellular Ca2+ level were assessed in endothelium-denuded strips of femoral arteries from 13-week-old SHR and normotensive Wistar-Kyoto rats (WKY). 2. The addition of ryanodine to the resting strips caused a concentration-dependent contraction in SHR. This contraction was extremely small in WKY. In the presence of 10(-5) M ryanodine, caffeine (20 mM) failed to cause a further contraction in SHR, but it caused a small contraction in WKY. After washout of the strips with a Krebs solution, the resting tone was greatly elevated in SHR when compared with WKY. 3. The elevated resting tone in SHR strips was abolished by 10(-7) M nifedipine. The ryanodine-induced contraction was also abolished by 10(-7) M nifedipine. Nifedipine itself caused a relaxation from the resting tone of SHR strips, suggesting the maintenance of myogenic tone. 4. In strips preloaded with fura-PE3, the addition of 10(-5) M ryanodine caused a large and moderate elevation of cytosolic Ca2+ level ([Ca2+]i) in SHR and WKY, respectively. After washout, the resting [Ca2+]i was greatly elevated in SHR. The ryanodine-induced elevation of [Ca2+]i was decreased by 5 x 10(-6) M verapamil in SHR. Verapamil itself caused a decrease in resting [Ca2+]i which was significantly greater in SHR than in WKY, and caused a relaxation only in SHR. 5. The resting Ca2+ influx in arteries measured by a 5 min incubation with 45Ca was significantly increased in SHR when compared with WKY. The resting Ca2+ influx was not increased by 10(-5) M ryanodine in both SHR and WKY. The net cellular Ca2+ uptake in arteries measured by a 30 min incubation with 45Ca was decreased by 10(-5) M ryanodine in both strains. 6. The resting Ca2+ influx was decreased by 10(-7) M nifedipine in the SHR artery, but it was unchanged in the WKY artery. 7. These results suggest that (1) the Ca2+ influx via L-type voltage-dependent Ca2+ channels was increased in the resting state of the SHR femoral artery, (2) the greater part of the increased Ca2+ influx was buffered by Ca2+ uptake into the SR and some Ca2+ reached the myofilaments resulting in the maintenance of the myogenic tone, and (3) therefore the functional removal of SR by ryanodine caused a potent contraction in this artery.  相似文献   

17.
To characterize insulin release and cytoplasmic free Ca2+ ([Ca2+]i) levels in the diabetic Chinese hamster islet B cell, islets from genetically normal (subline M) and diabetic (subline L) hamsters were collagenase isolated. Insulin release and glucose utilization (conversion of D-[5-(3H)]glucose to 3H2O) were measured in whole islets; [Ca2+]i levels were measured in single islet cells using fura-2. The Ca2+ channel agonist, 12 mmol/l perchlorate, ClO4-, increased the subnormal insulin response during 20 mmol/l glucose perifusion, but did not normalize it. Glucose utilization measured over a 2-h period was normal. Glucose induced an initial decrease and then a rise in [Ca2+]i in 85% of the normal (presumably B) cells. In diabetic cells, the [Ca2+]i response was delayed, subnormal and only observed in 23% of the cells. When perchlorate or another Ca2+ channel agonist, 10 mumol/l CGP 28392, was added with glucose, a larger proportion of the diabetic cells (61-67%) showed increased [Ca2+]i and the mean [Ca2+]i response was not different from normal. However, neither perchlorate nor CGP 28392 could normalize glucose-stimulated insulin release, and K(+)-induced insulin release was decreased in diabetic islets. The K(+)-induced [Ca2+]i rise was essentially normal in all the diabetic islet cells. Therefore, the diabetic hamster islet appears to metabolize glucose normally, but has a diminished insulin response to glucose and K+. The Ca2+ channel agonists markedly improve the subnormal [Ca2+]i response but not the insulin response. Glucose-induced elevation of [Ca2+]i and exocytosis appear defective in the diabetic Chinese hamster B cell.  相似文献   

18.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

19.
It has been suggested that adenosine cardioprotection occurs via adenosine A1 receptor-mediated activation of protein kinase C (PKC). However, adenosine has well-known vasodilatory effects in the myocardium, whereas PKC is a vasoconstrictor. This study examined whether adenosine A1 receptor activation alters the effects of the PKC activator. 1,2-dioctanoyl-s,n-glycerol (DOG) in isolated perfused rat hearts (left-ventricular developed pressure) and rat ventricular myocytes ([Ca2+]i and cell shortening). Exposure to DOG decreased left-ventricular developed pressure by 30%, an effect that was completely reversible. Pretreatment of isolated hearts with either the PKC inhibitor chelerythrine or the adenosine A1 agonist 2-chloro-N6-cyclo-cyclo-isolated pentlyadenosine (CCPA) attenuated the negative inotropic effects of DOG. In the isolated myocytes, DOG decreased [Ca2+]i and cell shortening by 25 and 28%, respectively, effects that were attenuated by both chelerythrine and CCPA. The CCPA attenuation of the DOG-induced decrease in [Ca2+]i and cell shortening was blocked by pretreating the myocytes with the adenosine A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). These results indicate that in rat ventricular myocardium, adenosine A1 receptor activation attenuates the apparent PKC-dependent negative inotropic effects of DOG via preservation of [Ca2+]i levels.  相似文献   

20.
We have previously found that human chymase cleaves big endothelins at the Tyr31-Gly32 bond and produces 31-amino acid long endothelins-(1-31), without any further degradation products. In this study, we investigated the effect of synthetic endothelin-1-(1-31) on the intracellular free Ca2+ concentration ([Ca2+]i) in cultured human coronary artery smooth muscle cells. Endothelin-1-(1-31) increased [Ca2+]i in a concentration-dependent manner (10(-14) to 10(-10) M). This endothelin-1-(1-31)-induced [Ca2+]i increase was not affected by phosphoramidon (N-(alpha-Rhamnopyranosyloxyhydroxyphosphinyl)-L-Leucyl-L-Tryptoph an), an inhibitor of endothelin-converting enzyme. It was, however, inhibited by 10(-10) M BQ123 (Cyclo-(-D-Trp-D-Asp(ONa)-Pro-D-Val-Leu-)), an endothelin ET(A) receptor antagonist, but not by 10(-10) M BQ788 (N-cis-2,6-dimethylpiperidinocarbonyl-L-yMeLeu-D-Trp(COOM e)-D-Nle-ONa), an endothelin ET(B) receptor antagonist. These results suggest that endothelin-1-(1-31) by itself exhibits vasoactive properties probably through endothelin ET(A) receptors. Since human chymase has been reported to play a role in atherosclerosis, endothelin-1-(1-31) may be one of the candidate substances for its cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号