首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Dopamine is present in the human placenta. The major function of dopamine is the inhibition of human placental lactogen (hPL) release from human trophoblastic cells. This effect is mediated by cAMP through dopamine D2 receptors. However, studies on the effects of cAMP in the control of hPL release have yielded conflicting results. The purpose of this study is to explore the distribution of dopamine receptors in the rat placenta. Dopamine D1 and D2 receptor mRNAs were colocalized in the rat placenta by in situ hybridization histochemistry using radiolabeled cRNA probes. Dopamine D1 and D2 receptor mRNAs were detected in large cells of the endometrium of the uterus on day 10 of gestation. On days 12-16 of gestation, hybridization signals were localized mainly in the spongiotrophoblast and giant cells of the junctional zone of the placenta. With the development of the placenta, signals were moving from the junctional zone to the labyrinth zone. Pit-1 mRNA was detected in the placental lactotrophs and was also colocalized in neighboring placental sections. Our results clearly showed that dopamine D1 and D2 receptor mRNAs were coexpressed in the placental lactotrophs that express Pit-1 mRNA.  相似文献   

6.
The possible involvement of prolactin (PRL) and growth hormone (GH) in osmoregulation during early life stages of the tilapia (Oreochromis mossambicus) was examined by in situ hybridization and immunocytochemistry using synthetic oligonucleotide probes and homologous antisera to two tilapia PRLs (PRL188 and PRL177) and GH. Hybridization signals for PRL188 mRNA were detected for the first time in newly hatched larvae (5 days after fertilization), and were significantly greater in larvae in fresh water (FW) than those in seawater (SW) until 10 days after hatching. PRL177 mRNA was detected in the pituitary of embryos 1 day before hatching. Although PRL177 gene expression in the embryo and newly hatched larvae in FW was not significantly different from those in SW, the expression was significantly greater in FW than in SW from Day 2 until Day 10. Hybridization signals for GH mRNA were first detected in newly hatched larvae. No significant differences in GH mRNA expression were observed between larvae in FW and those in SW. A stronger immunoreaction, a significantly larger PRL cell size, and a pituitary area containing PRL cells were observed in larvae hatched and maintained in FW, in those transferred from SW to FW, compared to larvae hatched and maintained in SW, and in those transferred from FW to SW. No significant difference was observed in the activity of GH cells between larvae in FW and those in SW. These results suggest that both PRLs are involved importantly in FW adaptation, whereas GH does not seem to play a critical role in osmoregulation during early stages of tilapia.  相似文献   

7.
8.
9.
The present study was designed to investigate the effect of prolactin (PRL) on plasminogen activator inhibitor-I (PAI-I) and tissue type plasminogen activator (tPA) gene expression in eCG-primed granulosa cells in vitro. At 46 h after the hormone treatment, ovaries were removed, and granulosa cells were prepared for culture. Cells were incubated for various times in serum-free medium in the presence or absence of LH and PRL alone or in combination. tPA and PAI-I activities in the media were assayed by fibrin overlay and reverse fibrin autograph, respectively. Cytoplasmic RNA from granulosa cells was prepared using the NP-40 method and was assayed for PAI-I and tPA mRNA levels. We demonstrated the following. 1) PRL increased PAI-I mRNA production in cultured granulosa cells. Inclusion of LH with PRL had a synergistic effect on increasing PAI-I mRNA levels. After 48-h culture, 3-fold increases in PAI-I mRNA levels were seen with LH in combination with PRL as compared with PRL alone. The synergistic increase in PAI-I mRNA levels occurred in a dose- and time-dependent manner. 2) The increase in PAI-I mRNA synthesis by PRL alone, or by PRL in combination with LH, was well correlated with the changes in PAI-I activity and antigen levels in the conditioned media. 3) PRL in the culture also dramatically decreased LH-induced tPA mRNA and activity in a dose- and time-dependent fashion. The decrease in the tPA activity by PRL was also correlated with an increase in the amount of PA-PAI-I complexes in the cell-conditioned media. 4) In situ hybridization of tPA and PAI-I mRNAs in the cultured granulosa cells also showed that PRL was capable of enhancing PAI-I mRNA while diminishing tPA mRNA production induced by LH. This suggests that the dose- and time-dependent decrease in the gonadotropin-induced tPA activity in the culture by the presence of PRL may be due to decreasing tPA mRNA synthesis on one hand and to neutralization of the tPA activity by the increased PAI-I activity on the other.  相似文献   

10.
11.
Angiotensin II (Ang II) participates in the regulation of anterior pituitary hormone secretion by acting either directly on the anterior pituitary or indirectly on the hypothalamus. When applied directly on pituitary cells, Ang II increases both ACTH and PRL secretion and has also been reported to affect GH secretion. Three distinct subtypes of Ang II receptors (AT1A, AT1B, and AT2) have been identified; they are unequally distributed and differently regulated in various tissues. We have previously demonstrated that only AT1A receptors are present in the hypothalamus while anterior pituitary cells express predominantly the AT1B subtype. Using in situ hybridization in combination with immunohistochemistry, the aim of the present study was to identify the phenotype of the endocrine cell expressing AT1B receptor messenger RNA (mRNA) in the anterior pituitary of adult male Sprague-Dawley rats. Expression of AT1B receptor mRNA was present in 33.9 +/- 1.0% of anterior pituitary cells. AT1B mRNA is predominantly expressed by lactotropes (78.2 +/- 2.1% of AT1B mRNA-expressing cells) and to a lower degree by corticotropes (18.3 +/- 2.1%) and is not detectable in somatotropes, mammosomatotropes, gonadotropes, or thyrotropes. These results indicate that in adult male rats, Ang II, which has been shown to be synthesized in gonadotropes, can directly stimulate PRL and ACTH release from lactotropes and corticotropes through activation of AT1B receptors. As only 53.8 +/- 2.7% of lactotropes and 23.6 +/- 2.8% of corticotropes expressed AT1B mRNA, our findings suggest a functional heterogeneity of both cell types regarding their sensitivity to Ang II.  相似文献   

12.
Estrogen is a robust stimulator of galanin synthesis and secretion in the anterior pituitary. Galanin is colocalized in lactotrophs in the estrogen-treated anterior pituitary, and its roles in lactotroph function are still being elucidated. In the present studies, we quantified the phenotypes of estrogen-treated Fischer 344 rat anterior pituitary cells expressing the galanin gene by dual in situ hybridization. The total population of galanin-positive pituitary cells increased from undetectable levels to 16% of all cells after 2 weeks of estrogen treatment. More than 90% of the galanin-positive cells coexpressed PRL messenger RNA, and one-third of the lactotrophs expressed galanin messenger RNA. We hypothesized that galanin in the anterior pituitary may contribute to the heterogeneous secretion of PRL, and that one of the functions of galanin is to regulate PRL secretion in an autocrine/paracrine manner. To test this hypothesis, we performed the reverse hemolytic plaque assay combined with in situ hybridization to measure PRL secretion and galanin gene expression within the same individual cells. PRL secretion from galanin-positive lactotrophs was significantly greater than that from galanin-negative lactotrophs. Moreover, treatment with galanin antiserum significantly attenuated PRL secretion from galanin-positive cells, and treatment with galanin significantly enhanced PRL secretion from galanin-negative lactotrophs. In conclusion, these data provide direct evidence that galanin derived from the estrogen-treated anterior pituitary stimulates PRL secretion in both autocrine and paracrine manners.  相似文献   

13.
The present study explores the significance of brain dopamine phenotype for individual variation in the neuroendocrine stress response of the rat. For this purpose, we used two Wistar rat lines previously selected for high or low responsiveness of the dopamine system to apomorphine using the gnawing response as the selection criterion. Systemic administration of the drug evoked in apomorphine-susceptible (apo-sus) rats a vigorous gnawing response, whereas apomorphine-unsusceptible (apo-unsus) rats did not gnaw under these conditions. These two rat lines represent individuals displaying extreme differences in gnawing behavior that otherwise coexist in a normal Wistar population. In this study basal and stress-induced hypothalamic-pituitary-adrenal activity and PRL release were measured in chronically cannulated, freely moving rats that endured a conditioned emotional response. Tyrosine hydroxylase messenger RNA (mRNA), corticosteroid receptor mRNA, and in vivo retention of [3H]corticosterone were measured in rat brain sections using in situ hybridization and in vivo autoradiography. The result show that 1) apo-sus rats had a markedly reduced PRL response to stress compared to apo-unsus animals, whereas basal levels were not significantly different. A12 dopaminergic neurons in the arcuate nucleus expressed significantly higher levels of tyrosine hydroxylase mRNA in apo-sus rats, suggesting that the reduced stress-induced PRL release could be due to an increased inhibitory control by dopaminergic neurons; 2) in apo-sus rats, stress resulted in a sustained elevation of ACTH and free corticosterone levels, whereas the total corticosterone levels were not different between the two rat lines; 3) under basal morning conditions, apo-sus rats had significantly higher plasma ACTH, but, in contrast, lower free corticosterone than apo-unsus rats; total plasma corticosterone levels were not different; 4) the basal evening ACTH level was elevated in apo-sus rats; after removal of the adrenals in the morning, this increased ACTH level in apo-sus rats persisted into the afternoon 6 h postadrenalectomy; and 5) hippocampal mineralocorticoid (MR), but not glucocorticoid (GR), receptor capacity for the ligand comparable between the groups; the MR of apo-sus rats displayed an increased retention of [3H]corticosterone in all hippocampal cell fields measured 24 h adrenalectomy; MR and GR mRNA in hippocampus as well as GR mRNA in the paraventricular nucleus were not significantly different in the two rat lines. In conclusion, the data suggest a common genetic background for individual variation in stress responsiveness and dopamine phenotype. High dopamine reactivity is linked to a reduced PRL and an increased ACTH response after stress. These high dopamine responders display a hyporesponsive adrenal cortex and corticosteroid feedback resistance associated with altered brain corticosteroid receptor properties.  相似文献   

14.
GH-binding protein (GHBP) or GH receptor is present in numerous extrahepatic tissues in the rodent. From mid- to late gestation in the mouse, the maternal serum concentration of GHBP increases 30- to 50-fold. We have investigated whether the placenta might synthesize GHBP and potentially contribute to this increase. RNA was isolated from placentas and subjected to Northern analysis using a cDNA probe to the shared region of GHBP and GH receptor-encoding mRNAs. From day 8 to day 18 of gestation, the GHBP-encoding mRNA (1.4 kb) increased 45-fold in quantity. The GH receptor-encoding mRNA (4.2 kb) increased sixfold by day 14 and then remained steady until day 18. These changes which were not co-ordinated parallel reported changes in the steady-state concentrations of 1.4 and 4.2 kb mRNAs in maternal liver, suggesting shared regulatory factors. Extracts of freshly isolated trophoblasts were assayed for GHBP with a radioimmunoassay specific for GHBP with a hydrophilic carboxyl terminus. The cytosolic content of immunoreactive GHBP increased fourfold from mid- to late gestation. Trophoblasts were isolated from placentas and cultured for 2 days on collagen gels in defined medium. Cultured cells were at least 90% viable and secreted mouse placental lactogen-II (mPL-II). Immunocytochemistry was carried out simultaneously on cells cultured from day 7 to day 17 of gestation using a monoclonal antibody (MAb 4.3), which recognizes the hydrophilic C-terminus of GHBP. Cell-localized GHBP was present in trophoblasts cultured for 2 days, but GHBP was not detectable by radioimmunoassay or by immunoprecipitation in concentrated culture media from cultures treated with 100 ng mouse GH/ml or 100 ng mPL-II/ml or from untreated cultures. RNA was isolated from cells cultured in an identical manner to those analysed by immunocytochemistry. Three GH receptor/GHBP mRNA species of 8, 4.2 and 1.4 kb were observed. The quantity of 4.2 and 1.4 kb mRNAs did not change significantly in cultures from day 7 to day 15 of gestation but, in cultures from day 17 of gestation, the amount of 1.4 kb mRNA dropped significantly, while that of the 4.2 kb mRNA remained unchanged. GHBP- and GH receptor-encoding mRNAs are not co-ordinately regulated in vivo or in vitro. Although mPL-II was secreted into the medium by cultured trophoblasts, secretion of GHBP could not be detected. The culture medium may not contain the specific factors required for secretion of placental GHBP, or placental GHBP may not be destined for secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
OBJECTIVE: To characterize the cellular sites and hormonal regulation of uterine androgen receptor gene expression in the monkey. METHODS: Ovariectomized rhesus monkeys (five in each group) were treated with placebo (the control group), estradiol (E2), E2 plus progesterone, or E2 plus testosterone by sustained-release pellets administered subcutaneously. After 3 days of treatment, uteri were removed and uterine sections were analyzed by in situ hybridization for androgen receptor messenger RNA (mRNA). RESULTS: Androgen receptor mRNA was detected in endometrial stromal cells and myometrial smooth muscle cells, with lesser expression in endometrial epithelial cells. Both E2 and E2 plus progesterone treatment doubled androgen receptor mRNA levels in stromal cells (P < .01), whereas E2 plus testosterone treatment increased stromal androgen receptor mRNA levels by about five-fold (P < .001) compared with placebo treatment. In the endometrial epithelium, E2 alone did not increase androgen receptor mRNA levels significantly. However, the E2 plus progesterone and E2 plus testosterone treatments increased epithelial androgen receptor mRNA levels by 4.3 and 5 times, respectively (P = .008 and P < .002, respectively). Androgen receptor mRNA was distributed homogeneously in smooth muscle cells across the myometrium. Estradiol treatment alone did not increase myometrial androgen receptor mRNA levels significantly, but the E2 plus progesterone and E2 plus testosterone treatments increased myometrial androgen receptor mRNA levels by 1.8 and 2 times, respectively (P = .001 and P < .001, respectively). CONCLUSION: Androgen receptor gene expression was detected in all uterine cell compartments where it was subject to significant sex steroid regulation. The fact that androgen receptor mRNA levels were consistently up-regulated by a combined E2 plus testosterone treatment while E2 treatment alone had little or no effect shows that a collaborative action of E2 and testosterone enhances androgen receptor expression in the monkey uterus.  相似文献   

17.
Five primary human pituitary tumor cell cultures were initiated from adenoma fragments obtained from patients with prolactin-secreting adenomas and acromegaly. Functional cell cultures were maintained and propagated in monolayer or suspension culture for up to 9 months. Optimal cell viability and growth were achieved using Ham's F10 medium enriched with 20% fetal bovine serum, although cells from a patient with acromegaly also grew in serum-free, defined, hormone-containing medium. Bromocriptine (100 ng/ml) did not alter the growth curve of replicating cells derived from a patient with acromegaly. These cells initially secreted 5.5 micrograms human growth hormone/10(6) cells, and hormone production diminished after 6 wk. Prolactin secretion by cells derived from prolactinomas (0.5 to 1.3 micrograms/10(6) cells/24 h) was stimulated by thyrotropin-releasing hormone (10 ng/ml) in two of the cultures. Both dopamine (10 ng/ml) and nickel chloride (1 mM) suppressed PRL secretion. These studies demonstrate that responsive human pituitary tumor cell cultures can be initiated and maintained.  相似文献   

18.
In previous work it was shown that the immune cytokine interferon-gamma (IFN-gamma) inhibits hormone secretion in anterior pituitary (AP) cell cultures, an action most likely mediated by folliculostellate (FS) cells. In the present study, we wanted to investigate whether nitric oxide (NO) is involved in this inhibitory action of IFN-gamma. NO synthase (NOS) inhibitors with affinity for the inducible (iNOS) and the constitutive (cNOS) isoform such as N(G)-monomethyl-L-arginine (L-NMMA) and S-methyl-L-thiocitrulline (SMLT) dose-dependently blocked the inhibitory action of IFN-gamma on GHRH-stimulated GH secretion, and partially reversed the inhibitory effect on basal prolactin (PRL) release. In the absence of IFN-gamma these inhibitors significantly augmented basal PRL release and slightly enhanced GHRH-stimulated GH release. L-N6-(1-iminoethyl)lysine (L-NIL), a NOS inhibitor with preferential affinity for iNOS, abrogated the IFN-gamma effect on GHRH-stimulated GH secretion and partially reversed IFN-gamma inhibition of PRL release. However, L-NIL did not exert a stimulatory effect on basal PRL and GHRH-stimulated GH release by its own. 2,4-diamino-6-hydroxypyrimidine (DAHP), a NOS inhibitor by interfering with tetrahydrobiopterin (BH4) cofactor availability, showed the same activity profile as L-NIL. NOS inhibitors blocked or reduced the production of NO as detected by measuring nitrite (NO2-) levels in AP cell cultures and cGMP levels in the NO-reporter cell line RFL-6. The NOS inhibiting action of L-NMMA was confirmed by competition experiments with the natural NOS substrate L-arginine. Thus, in culture medium with lower amounts of L-arginine, L-NMMA blocked the IFN-gamma-induced inhibition of GHRH-stimulated GH release at a lower dose. The inhibition of PRL and GH release by IFN-gamma was markedly reduced in L-arginine-depleted medium. The NO donor sodium nitroprusside (SNP) mimicked the inhibitory action of IFN-gamma on GHRH-stimulated GH and basal PRL release. Similarly to IFN-gamma, SNP did not affect basal GH release. As previously reported, inhibition by IFN-gamma occurred only in AP cell populations containing a minimal proportion of FS cells. As studied in different cell populations obtained by unit gravity sedimentation in a serum albumin gradient, L-NMMA reversed the IFN-gamma effect in the same populations enriched in FS cells. Interestingly, in the absence of IFN-gamma L-NMMA strongly stimulated basal PRL release in the population most enriched in FS cells. It is concluded that IFN-gamma through activation of the iNOS pathway probably in FS cells enhances the production of NO and that this effect is responsible for the inhibitory action of IFN-gamma on GHRH-stimulated GH release and partially for the IFN-gamma-induced decrease in basal PRL release. On the other hand, NO, likely produced by cNOS, appears to exert a tonic inhibitory effect on GHRH-stimulated GH and basal PRL release. It seems therefore that low amounts of NO produced constitutively may take charge of subtle physiological adaptations, and higher levels of NO produced by iNOS under the influence of IFN-gamma may attenuate PRL and GH release during emergency conditions of immune and inflammatory reactions.  相似文献   

19.
The epidermal growth factor (EGF) receptor is a transmembrane protein that binds EGF and transforming growth factor alpha (TGF alpha), and that stimulates phospholipase C gamma 1 (PLC gamma 1) activity. In this study the role of the EGF receptor in chronic pancreatitis was studied. By immunohistochemistry, the EGF receptor, TGF alpha, and PLC gamma 1 were found to be expressed at high concentrations in pancreatic ductal and acinar cells from chronic pancreatitis patients. Northern blot analysis showed that, by comparison with normal controls, 19 of 27 chronic pancreatitis tissues exhibited a 5.7-fold increase in EGF receptor mRNA concentrations, and 20 of 27 chronic pancreatitis tissues exhibited a sixfold increase in TGF alpha mRNA concentrations. In situ hybridisation confirmed that overexpression occurred in ductal and acinar cells, and showed that both mRNA moieties colocalised with their respective proteins. These findings suggest that TGF alpha may act through autocrine and paracrine mechanisms to excessively activate the overexpressed EGF receptor in the two major cell types of the exocrine pancreas, thereby contributing to the pathobiology of this disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号