首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.  相似文献   

2.
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2). The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development. In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells. While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans. VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2. In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel. VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.  相似文献   

3.
4.
5.
6.
Normal development and function of the placenta requires invasion of the maternal decidua by trophoblasts, followed by abundant and organized vascular growth. Little is known of the significance and function of the vascular endothelial growth factor (VEGF) family, which includes VEGF, VEGF-B, and VEGF-C, and of placenta growth factor (PIGF) in these processes. In this study we have analyzed the expression of VEGF and PIGF mRNAs and their protein products in placental tissue obtained from noncomplicated pregnancies. Expression of VEGF and PIGF mRNA was observed by in situ hybridization in the chorionic mesenchyme and villous trophoblasts, respectively. Immunostaining localized the VEGF and PIGF proteins in the vascular endothelium, which was defined by staining for von Willebrand factor and for the Tie receptor tyrosine kinase, an early endothelial cell marker. VEGF-B and VEGF-C mRNAs were strongly expressed in human placenta as evidenced by Northern blot analysis. These data imply that VEGF and PIGF are produced by different cells but that both target the endothelial cells of normal human term placenta.  相似文献   

7.
8.
The vascular endothelial growth factor (VEGF) and the VEGF-C promote growth of blood vessels and lymphatic vessels, respectively. VEGF activates the endothelial VEGF receptors (VEGFR) 1 and 2, and VEGF-C activates VEGFR-3 and VEGFR-2. Both VEGF and VEGF-C are also potent vascular permeability factors. Here we have analyzed the receptor binding and activating properties of several cysteine mutants of VEGF-C including those (Cys156 and Cys165), which in other platelet-derived growth factor/VEGF family members mediate interchain disulfide bonding. Surprisingly, we found that the recombinant mature VEGF-C in which Cys156 was replaced by a Ser residue is a selective agonist of VEGFR-3. This mutant, designated DeltaNDeltaC156S, binds and activates VEGFR-3 but neither binds VEGFR-2 nor activates its autophosphorylation or downstream signaling to the ERK/MAPK pathway. Unlike VEGF-C, DeltaNDeltaC156S neither induces vascular permeability in vivo nor stimulates migration of bovine capillary endothelial cells in culture. These data point out the critical role of VEGFR-2-mediated signal transduction for the vascular permeability activity of VEGF-C and strongly suggest that the redundant biological effects of VEGF and VEGF-C depend on binding and activation of VEGFR-2. The DeltaNDeltaC156S mutant may provide a valuable tool for the analysis of VEGF-C effects mediated selectively via VEGFR-3. The ability of DeltaNDeltaC156S to form homodimers also emphasizes differences in the structural requirements for VEGF and VEGF-C dimerization.  相似文献   

9.
10.
Vascular endothelial growth factor C (VEGF-C) recently has been described to be a relatively specific growth factor for the lymphatic vascular system. Here we report that ectopic application of recombinant VEGF-C also has potent angiogenic effects in vivo. VEGF-C is sufficiently potent to stimulate neovascularization from limbal vessels in the mouse cornea. Similar to VEGF, the angiogenic response of corneas induced by VEGF-C is intensive, with a high density of new capillaries. However, the outgrowth of microvessels stimulated by VEGF-C was significantly longer than that induced by VEGF. In the developing embryo, VEGF-C was able to induce branch sprouts from the established blood vessels. VEGF-C also induced an elongated, spindle-like cell shape change and actin reorganization in both VEGF receptor (VEGFR)-2 and VEGFR-3-overexpressing endothelial cells, but not in VEGFR-1-expressing cells. Further, both VEGFR-2 and VEGFR-3 could mediate proliferative and chemotactic responses in endothelial cells on VEGF-C stimulation. Thus, VEGF-C may regulate physiological angiogenesis and participate in the development and progression of angiogenic diseases in addition to lymphangiogenesis.  相似文献   

11.
12.
13.
14.
No growth factors specific for the lymphatic vascular system have yet been described. Vascular endothelial growth factor (VEGF) regulates vascular permeability and angiogenesis, but does not promote lymphangiogenesis. Overexpression of VEGF-C, a ligand of the VEGF receptors VEGFR-3 and VEGFR-2, in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement. Thus, VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis. VEGF-C may play a role in disorders involving the lymphatic system and may be of potential use in therapeutic lymphangiogenesis.  相似文献   

15.
16.
17.
18.
19.
The vascular endothelial growth factor (VEGF) family has recently expanded by the identification and cloning of three additional members, namely VEGF-B, VEGF-C, and VEGF-D. In this study we demonstrate that VEGF-B binds selectively to VEGF receptor-1/Flt-1. This binding can be blocked by excess VEGF, indicating that the interaction sites on the receptor are at least partially overlapping. Mutating the putative VEGF receptor-1/Flt-1 binding determinants Asp63, Asp64, and Glu67 to alanine residues in VEGF-B reduced the affinity to VEGF receptor-1 but did not abolish binding. Mutational analysis of conserved cysteines contributing to VEGF-B dimer formation suggest a structural conservation with VEGF and platelet-derived growth factor. Proteolytic processing of the 60-kDa VEGF-B186 dimer results in a 34-kDa dimer containing the receptor-binding epitopes. The binding of VEGF-B to its receptor on endothelial cells leads to increased expression and activity of urokinase type plasminogen activator and plasminogen activator inhibitor 1, suggesting a role for VEGF-B in the regulation of extracellular matrix degradation, cell adhesion, and migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号