首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
本文作者选用3种不同规格的高性能仿钢纤维,研究了不同掺量高性能仿钢纤维混凝土的抗弯韧性,以及不同纤维掺量对不同强度混凝土性能的影响规律.结果表明,仿钢纤维能显著提高混凝土的抗冲击韧性:随着纤维掺量的提高,单掺或混掺纤维混凝土梁的抗弯冲击初裂次数和破坏次数逐渐增加;混杂纤维混凝土的初裂和破坏次数随基体强度的增加而增加;单掺0.5mm纤维的混凝土延性指数较大,混掺纤维试件的延性指数随纤维掺量的提高而显著增加.  相似文献   

2.
粗合成纤维活性粉末混凝土抗弯韧性试验   总被引:1,自引:0,他引:1  
为研究不同粗合成纤维用量下活性粉末混凝土的抗弯韧性,采用四点弯曲试验对粗合成纤维用量分别为4.75,9.5,14.25,19kg·m-3的纤维活性粉末混凝土试件进行了研究,同时与不掺入纤维的素活性粉末混凝土进行了对比分析。结果表明:不掺入纤维的素活性粉末混凝土弯拉试件发生脆性破坏,试件一裂即断,未得到荷载-挠度曲线的下降段;而粗合成纤维掺入后能够提高活性粉末混凝土的韧性,使弯拉试件转变为明显的延性破坏,荷载-挠度曲线都可得到稳定的下降段,同时曲线还出现了二次强化现象,有2个峰值;随着粗合成纤维掺量的增加,弯拉试件荷载-挠度曲线的下降段愈加平缓,韧性指数增大;粗合成纤维掺量(体积分数)为1.0%~2.0%时,剩余强度在抗折强度的85%以上,此时粗合成纤维对裂后基体具有较强的阻裂能力,能够大大提高弯拉试件开裂后的韧性。  相似文献   

3.
试验研究了聚烯烃粗纤维掺量、基体强度、纤维直径等因素对纤维混凝土梁抗弯冲击性能的影响规律。结果表明,粗合成纤维对混凝土抗冲击性能有显著的增强效果,混凝土由脆性破坏变为良好的延性破坏。随着纤维掺量的增加,纤维混凝土梁的初裂冲击次数和破坏冲击次数一直增加。与直径1mm的纤维相比,混杂纤维能有效提高试件的抗冲击性能,发挥不同纤维的作用,但均低于单掺直径0.5mm和0.8mm纤维的试件。单掺0.5mm纤维的试件,延性指数较大;单掺0.8mm纤维的试件,延性指数最低。混掺纤维试件的延性指数随纤维掺量的增加有较明显的增大。  相似文献   

4.
通过钢纤维与高性能合成纤维混掺以改善活性粉末混凝土的韧性、降低脆性,由弯曲试验测得了荷载-位移曲线,分析了钢纤维与不同品种、不同掺量合成纤维混掺对改善RPC韧性的效果。试验发现:当钢纤维体积掺量1%或2%与粗聚烯烃纤维或细聚乙烯醇纤维混掺时,可显著改善RPC的弯曲韧性;首次实现了使RPC变形具有"二次硬化"特征;钢纤维体积掺量为1%,与粗聚烯烃纤维、细聚乙烯醇纤维混掺时的韧性指标T(5)和T(7)比单掺钢纤维时分别提高49.8%~140%和82.3%~215.6%;从经济性看,钢纤维掺量为1%与粗聚烯烃或者细聚乙烯醇纤维混掺时,其增韧效果更优;钢纤维掺量为2%时,细聚乙烯醇纤维掺量不宜高于9 kg/m3。  相似文献   

5.
为了研究不同几何尺度钢纤维混掺和钢纤维与高性能合成纤维混掺对活性粉末混凝土(RPC)弯曲韧性的改善效果,基于P-CMOD曲线探讨了混杂纤维种类、纤维掺量等对RPC弯曲韧性的影响规律.研究发现:混掺纤维RPC试件表现出比单掺钢纤维RPC试件更好的变形能力,P-CMOD曲线下降段更加平缓;钢纤维与高性能合成纤维混掺,可以显...  相似文献   

6.
通过三点弯曲断裂试验,研究了钢纤维、钢纤维-粗聚烯烃纤维、钢纤维-聚乙烯醇纤维以及钢纤维-粗聚烯烃纤维-聚乙烯醇纤维对活性粉末混凝土(RPC)断裂韧性的改善效果.结果表明:与单掺钢纤维的RPC试件相比,钢纤维与粗聚烯烃或聚乙烯醇纤维混掺增强RPC试件的预制裂缝尖端出现数条细小的微裂缝,其荷载-挠度曲线和荷载-裂缝口张开位移(CMOD)曲线均表现出明显的"二次硬化"现象;当钢纤维体积分数为1.5%,聚乙烯醇或粗聚烯烃纤维掺量为9kg/m3时的混杂纤维RPC试件与单掺钢纤维RPC试件相比,其峰值荷载分别提高了54.4%和85.4%,断裂能分别提高了138.4%和88.5%,断裂韧度分别提高了111.9%和50.8%;当钢纤维体积分数为1.0%,粗聚烯烃纤维和聚乙烯醇纤维掺量均为3.0kg/m3或4.5kg/m3时,钢纤维、粗聚烯烃和聚乙烯醇纤维混掺表现出良好的混杂效应;钢纤维体积分数为1.0%~1.5%,合成纤维总掺量为9kg/m3时,对RPC断裂性能的改善效果最理想.  相似文献   

7.
采用钢纤维与粗聚烯烃纤维或细聚乙烯醇纤维混掺技术,制备了新型超高强度活性粉末混凝土(RPC),以改善RPC的韧性及脆性;由弯曲试验测其荷载-位移曲线,分析了纤维品种、掺量变化对新型RPC韧性的影响规律,并对比了在胶凝材料中添加超细水泥或硅灰所制备的RPC的韧性.结果表明:混掺纤维RPC的荷载-位移曲线具有二次硬化特征;混掺纤维RPC的韧性指标明显高于单掺钢纤维RPC,以1%钢纤维体积分数与9kg/m3粗聚烯烃纤维混掺所制备的超细水泥RPC韧性指标T(7)比单掺钢纤维时提高70%;从经济性看,以1%钢纤维体积分数与粗聚烯烃纤维或细聚乙烯醇纤维混掺对RPC增韧效果更优;当钢纤维体积分数为2%时,细聚乙烯醇纤维掺量不宜高于9kg/m3;超细水泥RPC韧性优于硅灰RPC试件.  相似文献   

8.
通过模拟海水环境,对同体积率下钢纤维和PVA纤维进行了混掺,采用干湿交替腐蚀方法研究了PVA-钢混杂纤维混凝土的弯曲韧性。结果表明,腐蚀后混杂纤维混凝土的初裂荷载、峰值荷载和弯曲强度均下降;PVA-钢混杂纤维混凝土经腐蚀后的混凝土韧性指数I_5、I_(10)和弯曲韧性比均降低,纤维对基体的耗能能力、延性和增韧效果下降明显。  相似文献   

9.
《混凝土》2016,(7)
通过对不同纤维种类及掺量的活性粉末混凝土进行弯曲韧性试验,测出相应的荷载-挠度曲线,并依据ASTM C1018韧性指数法分析了不同体积掺量的钢纤维、聚丙烯纤维及两者的混合对改善RPC韧性的影响。试验发现:体积掺量为2.5%的钢纤维单掺时对改善RPC的弯曲韧性和峰值荷载较合理;当体积掺量为1.5%的钢纤维和体积掺量为0.15%的聚丙烯纤维混掺时,其增韧效果更优;单掺聚丙烯纤维对RPC的增韧效果不明显,且对峰值荷载易产生负作用。  相似文献   

10.
为了降低机场道面混凝土脆性,通过混掺高性能粗聚烯烃纤维(PP)和细聚乙烯醇纤维(PVA)来提高道面混凝土韧性。通过四点弯曲试验,测得了梁试件荷载 挠度曲线,分析了2种纤维体积掺率混掺对改善三级配机场道面混凝土弯曲韧性的效果。结果表明:纤维混掺可明显改善混凝土抗弯韧性;PP的掺入使荷载 挠度曲线出现了2次峰值;PVA体积掺率为0.2%或0.4%时,随着PP掺率增加,韧性指标值P300,P75,P50均呈增大趋势;PP掺率的增加对后期韧性指标值P75,P50的提高更为显著;增加PVA掺率对提高第一峰值强度较为显著;PP和PVA分别以体积掺率1.1%和0.4%混掺时,机场道面混凝土抗弯韧性提高最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号