首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal biosorption onto solid wastes from olive oil production plants, olive pomace, has been investigated. Acid-base properties of the active sites of olive pomace were determined by potentiometric titrations and represented by a continuous model accounting for two main kinds of active sites. Competition among protons and heavy metals in solution was considered by performing biosorption tests at different equilibrium pH with single (Cu and Cd) and binary metal systems (Cu-Cd). Both Langmuir extensions and non-ideal competitive adsorption models (NICA models) can be used to represent experimental data of Cu and Cd biosorption in single metal systems at different equilibrium pH. Nevertheless only NICA models, accounting for site heterogeneity and non-ideal adsorption of the different species simultaneously present in solution, can adequately simulate the competition among Cu and Cd in binary metal systems by using the parameters fitted to single system data.  相似文献   

2.
A study on olive mill residues (OMR) as copper adsorbing material is reported in this work. A rough characterization of this waste material has been performed, by microanalysis and SEM pictures. Sorption tests with suspended OMR evidenced copper removal from solution, of about 60% in the investigated experimental conditions. The COD release in solution was also monitored during biosorption. Considering that it was significant, OMR washings with water were performed before biosorption. In this case the COD release in solution was reduced to less than 600 mg/L after two washings, while the OMR metal sorption properties did not change. Regenerated residues by acid solutions gave a copper removal of about 40%, in the same experimental conditions of the first adsorption test: regeneration with EDTA at different concentrations suggested that it presents a damage of adsorption active sites. On the other hand, the use of HCl and CaCl2 led to completely regenerate the biosorbent material. Tests were also performed with a column filled with 80 g of OMR and the breakpoint was demonstrated to take place after that about 1 L solution was treated in the investigated experimental conditions. Regeneration tests permitted to demonstrate that a concentration factor of about 2 can be obtained in no-optimized conditions, highlighting the possibility of using OMR for the treatment of metal bearing effluents. The main advantage of the process would be the ‘‘low cost’’ biosorbing material, considering that it represents a waste in the olive oil production.  相似文献   

3.
Garnier C  Mounier S  Benaïm JY 《Water research》2004,38(17):3685-3692
Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.  相似文献   

4.
Robinson T  Chandran B  Nigam P 《Water research》2002,36(11):2824-2830
This paper deals with two low-cost, locally available, renewable biosorbents; apple pomace and wheat straw for textile dye removal. Experiments at total dye concentrations of 10, 20, 30, 40, 50, 100, 150, and 200 mg/l were carried out with a synthetic effluent consisting of an equal mixture of five textile dyes. The effect of initial dye concentration, biosorbent particle size, quantity of biosorbent, effective adsorbance, dye removal and the applicability of the Langmuir and Freundlich isotherms were examined. One gram apple pomace was found to be a better biosorbent, removing 81% of dyes from the synthetic effluent at a particle size of 2 mm x 4 mm and 91% at 600 microm. Adsorption of dyes by apple pomace occurred at a faster rate in comparison to wheat straw. Both the isotherms were found to be applicable in the case of dye adsorption using apple pomace.  相似文献   

5.
Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.  相似文献   

6.
Eight different sewage treatment works were sampled in the North West of England. The effectiveness of the conventional treatment processes (primary sedimentation and biological trickling filters) as well as various tertiary treatment units in terms of both total and dissolved copper removal was evaluated. The removal of total copper across primary sedimentation averaged 53% and were relatively consistent at all sites, however, at three sites the removal of dissolved copper also occurred at this stage of treatment. Removal of total copper by the biological trickling filters averaged 49%, however, substantial dissolution of copper occurred at two sites, which highlighted the unpredictability of this treatment process in the removal of dissolved copper. Copper removal during tertiary treatment varied considerably even for the same treatment processes installed at different sites, primarily due to the variability of insoluble copper removal, with little effect on copper in the dissolved form being observed. The proportion of dissolved copper increased significantly during treatment, from an average of 22% in crude sewages to 55% in the final effluents. There may be the potential to optimise existing, conventional treatment processes (primary or biological treatment) to enhance dissolved copper removal, possibly reducing the requirement for installing any tertiary processes specifically for the removal of copper.  相似文献   

7.
为了使生物吸附剂能更好地在实际中得到应用,研究了1株对中低浓度含Cr废水具有高效吸附能力的工程茵的廉价培养方法.研究表明,利用3%的制糖厂废弃糖蜜结合20 g/L的城市污水厂回流污泥作为工程菌的廉价发酵底物能很好地生产生物吸附剂.工程茵对碳源的需求量大,能在较宽的偏酸性环境下生长,在pH值为3.0~7.0时生物吸附剂的产量为43.3~38.7g/L.发酵效果基本不受接种液种龄的限制,发酵启动稳定.底物初始pH值对生物吸附剂吸附能力的影响较大,最优pH值为3.0,此时对总Cr的去除率为99.9%;当pH值增加到5.0后,对总Cr的去除率仅为pH值为3.0时的一半.发酵时间在一定程度上影响生物吸附剂的产量,但其吸附性能在整个发酵过程中均能保持较高水平(去除率>80%),具有良好的稳定性.  相似文献   

8.
Volvariella volvacea was used for removal of copper and zinc from waste water. Various biosorption parameters were studied like, time, temperature, pH, metal ion and biomass concentration. The energy of activation for Cu and Zn are calculated to be 4.36 and 3.96 v K v Cal/mole, respectively. Volvariella volvacea was found to be more suitable for Cu removal, compared to Zn. Extraction isotherm curves were also developed to determine the theoretical number of stages required for waste water treatment. Both Cu and Zn biosorption followed the Freundlich adsorption isotherm model.  相似文献   

9.
W Liu 《Water research》2001,35(17):4111-4125
The acid-base properties of natural illites from different areas were studied by potentiometric titrations. The acidimetric supernatant was regarded as the system blank to calculate the surface site concentration due to consideration of substrate dissolution during the prolonged acidic titration. The following surface complexation model could give a good interpretation of the surface acid-base reactions of the aqueous illites:  相似文献   

10.
Yin H  He B  Lu X  Peng H  Ye J  Yang F 《Water research》2008,42(14):3981-3989
The present study focused on the improvement of chromium resistance and biosorption efficiency in Candida utilis CR-001 utilizing protoplast mutagenesis technology. Through ultraviolet (UV) radiation, HNO(2) treatment and chromium acclimatization, six preferred mutants of C. utilis CR-001 were screened out, namely, CRU132-26, CRC7-2, CRC2811-1, CRC2811-2, CRC2814-8 and CRY182-1. The removal efficiency of these mutants for 20mg/L Cr(VI) solutions were 85.6%, 95.2%, 87.0%, 82.5%, 94.7% and 82.7%, respectively, noticeably greater than that of the parent strain CR-001 (79.5%). Furthermore, CRC2811-1 exhibited outstanding application potential with high removal efficiency and low dosage over a wide range of pH. Cell surface and inner details of CRC2811-1 and its parent strain CR-001 were analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to explore possible changes caused by inducement. The results showed that Cr-sorption of CR-001 mainly depended on intracellular accumulation, but for CRC2811-1, cell surface deposition was also involved in improving its chromium biosorption capacity.  相似文献   

11.
A review of the biochemistry of heavy metal biosorption by brown algae   总被引:56,自引:0,他引:56  
Davis TA  Volesky B  Mucci A 《Water research》2003,37(18):4311-4330
  相似文献   

12.
This paper discusses the sorption performance of novel materials for the removal of lead(II) and copper(II) from near-neutral aqueous solutions. Active carbons with surface heteroatoms of oxygen and phosphorus have been prepared. The surface functional groups display weakly acidic ion exchange characteristics. The optimum solution pH for maximum metal sorption is related to the pK values of the surface functional groups. In oxygenated active carbons, pK values are not distinct but can be obtained by describing proton binding to the heterogeneous adsorbent surface as a continuous proton affinity distribution. Information derived from zeta-potential measurements combined with knowledge of the pK distribution function and concentration of surface functional groups has been used to explain the selectivity of oxidised active carbons towards lead(lI) in the presence of copper(II) from multi-metal bearing solutions. Marine algal-based biosorbents have been challenged with lead(II) and copper(II)-bearing wastewater. The weakly acidic carboxyl groups of structural polysaccharides present within the algal matrix display high sorption capacity for both metals. The negative surface charge of algal particles results in electrostatic interactions as well as coordination between metal species and the adsorbent surface. Proton affinity for the algal surface lowers the negative surface potential at pH values around 2. The surface functional groups in algae unlike those in oxidised active carbons may be represented by discrete acid-dissociation constant values. The influence of conformational differences in uronic-acid segments upon metal ion selectivity is discussed.  相似文献   

13.
A battery scheme comprising sequential alum coagulation, activated-carbon adsorption and electrochemical oxidation over boron-doped diamond electrodes to mineralize a leachate from olive pomace processing is demonstrated. The effect of coagulant and adsorbent concentration on treatment efficiency was assessed in the range 0.1-50 mM Al(3+) and 2.5-50 g/L activated-carbon and optimal conditions were established. Coagulation at 7.5mM Al(3+) resulted in substantial solids and color removal (i.e. 80% and 93%, respectively). This was accompanied by only 30% chemical oxygen demand (COD) reduction (initial COD was about 3,500 mg/L). The latter increased to 80% though when coagulation was coupled with adsorption at 25 g/L activated carbon. Electrochemical oxidation of the original effluent for 360 min led to 63% and 82% COD reduction at 10 and 20A current intensity, respectively. When this process was tested as a polishing stage following coagulation and adsorption, overall COD removal reached values of 92% and 97%, respectively. The final effluent was also colorless and solids free. However, the treated effluent still exhibited ecotoxicity possibly due to the formation of ecotoxic oxidation products.  相似文献   

14.
Biosorption of nanoparticles to heterotrophic wastewater biomass   总被引:4,自引:0,他引:4  
Sorption to activated sludge is a major removal mechanism for pollutants, including manufactured nanoparticles (NPs), in conventional activated sludge wastewater treatment plants. The objectives of this work were to (1) image sorption of fluorescent NPs to wastewater biomass; (2) quantify and compare biosorption of different types of NPs exposed to wastewater biomass; (3) quantify the effects of natural organic matter (NOM), extracellular polymeric substances (EPS), surfactants, and salt on NP biosorption; and (4) explore how different surface functionalities for fullerenes affect biosorption. Batch sorption isotherm experiments were conducted with activated sludge as sorbent and a total of eight types of NPs as sorbates. Epifluorescence images clearly show the biosorption of fluorescent silica NPs; the greater the concentration of NPs exposed to biomass, the greater the quantity of NPs that biosorb. Furthermore, biosorption removes different types of NPs from water to different extents. Upon exposure to 400 mg/L total suspended solids (TSS) of wastewater biomass, 97% of silver nanoparticles were removed, probably in part by aggregation and sedimentation, whereas biosorption was predominantly responsible for the removal of 88% of aqueous fullerenes, 39% of functionalized silver NPs, 23% of nanoscale titanium dioxide, and 13% of fullerol NPs. Of the NP types investigated, only aq-nC60 showed a change in the degree of removal when the NP suspension was equilibrated with NOM or when EPS was extracted from the biomass. Further study of carbonaceous NPs showed that different surface functionalities affect biosorption. Thus, the production and transformations in NP surface properties will be key factors in determining their fate in the environment.  相似文献   

15.
Fungi such as Agaricus macrosporus show potential for the removal of heavy metals from aqueous solutions contaminated by zinc, copper, mercury, cadmium or lead. This study investigated biosorption of these metals by living or non-living biomass of A. macrosporus from an acid solution, an acid solution supplemented with potassium and phosphorus, and an alkaline solution. Uptake showed a pH-dependent profile. Maximum percentage uptake of all metals was found to occur at alkaline pH (Cu 96%, Pb 89%). With living biomass, metal biosorption was greater and faster in K/P-supplemented acid medium than in non-supplemented acid medium, with equilibrium reached within 15 min for all metals, and the highest percentage uptake being of cadmium (96%). In general, the greatest differences in biosorption capacity were seen for living biomass, between supplemented and non-supplemented acid medium; the smallest differences were between living and dead biomass in alkaline medium. These results support the potential utility of A. macrosporus for heavy metal removal.  相似文献   

16.
The aim of this study was to investigate the use of liver moss (Dumortiera hirsute Sw. nees) as an alternative adsorbent for the removal of nickel, copper and cadmium from aqueous solution. The results showed that equilibrium contact time was 60?min and acidic pH was favourable for removal of metal ions. Higher initial metal ion concentrations led to lower removal. The data were fitted well both Langmuir and Freundlich isotherms. The monolayer adsorption capacities were 30.675, 35.971 and 53.476?mg/g for nickel, copper and cadmium, respectively. The presence of metal ions such as sodium, potassium and magnesium at concentration of 10?mM was found to have no significant effect on the removal of nickel, copper and cadmium. The removal of nickel, copper and cadmium was markedly inhibited, however, in the presence of calcium ion and heavy metal ions mixture in solutions. The kinetic data for removal processes were described by the pseudo-second-order model. The liver moss shows high potential as an economic and abundant material for the removal of metal ions from aqueous solution.  相似文献   

17.
The purpose of this study was to examine the usefulness of electron paramagnetic resonance spectroscopy (EPR) to estimate zinc and copper ions biosorption from the environment by pigmented soil fungi Cladosporium cladosporioides. The existence of a low amount of pheomelanin, besides eumelanin, in C. cladosporioides samples was proved by the analysis of shape of their EPR spectra. Concentration of o-semiquinone free radicals in crude mycelium was 2.4x10(17) spin/g. Changes in free radicals system of C. cladosporioides cultured in the presence of Zn2+ and Cu2+ were analysed. Both magnetic and chemical interactions of zinc and copper ions with free radicals in C. cladosporioides melanin were found. Magnetically interacting diamagnetic Zn2+ ions increased the concentration of o-semiquinone free radicals in melanin existing in C. cladosporioides mycelium, whereas paramagnetic Cu2+ ions decreased this concentration. Chemical interactions of Zn2+ and Cu2+ ions decreased the free radical concentrations in C. cladosporioides melanin. Homogeneously distributed free radicals in C. cladosporioides melanin rise its activity in biosorption processes.  相似文献   

18.
Management of the effluent from the olive oil industry is of capital importance nowadays, especially in the Mediterranean countries. Most of the scarce existing studies concerning olive mill wastewater (OMW) treatment by means of membrane processes not only do fix their aims simply on achieving irrigation standards, but lack suitable pretreatments against deleterious fouling issues. With the target of achieving the parametric requirements for public waterways discharge or even for reuse in the production process, a bench-scale study was undertaken to evaluate the feasibility of a thin-film composite reverse osmosis (RO) membrane (polyamide/polysulfone) for the purification of OMW. Previously, OMW was pretreated by means of chemical oxidation based on Fenton’s reagent, flocculation-sedimentation and biosorption through olive stones. Impacts of the main operating parameters on permeate flux and pollutants rejection of the RO process, as well as fouling on the membrane surface, were examined for removing the significant ionic concentration and remaining organic matter load of the pretreated OMW. Combining operating parameters adequately in a semibatch operating regime ensured high and sustainable permeate flux, yielding over 99.4% and 98.5% removal efficiencies for the chemical oxygen demand and ionic content respectively, as well as complete rejection of phenols, iron and suspended solids.  相似文献   

19.
Complexation properties of an anthropogenic fulvic acid (FA) extracted from a composted sewage sludge (csFA) for Cu(II), Pb(II) and Cd(II) were studied at pH=6 and at a concentration of 25 mg L(-1). For the case of Cu(II), a particular analysis of the complexation phenomena was done at pH values of 3, 4, 5 and 6 and at aqueous FA concentrations of 25, 50 and 100 mg L(-1) by synchronous excitation molecular fluorescence spectroscopy (SyF). Potentiometric titrimetry with Cu(II), Pb(II), Cd(II) and H+ ion-selective electrodes and acid-base conductimetric titrations were used to obtain experimental information about the acid properties and complexation phenomena. A comparison of the results obtained for csFA with a natural soil FA (sFA) was made. Differences have been detected in the structural composition of the two samples and in the structure of the binding sites. In the csFA, binding site structures containing nitrogen probably play an important role in the complexation, besides oxygen containing structures. Complexation by sFA is mainly due to carboxylic and phenolic structures. Nevertheless, this work shows that csFA have macroscopic complexation properties (magnitude of the conditional stability constant and binding sites concentration) somewhat similar to the natural sFA samples.  相似文献   

20.
The presence of excessive amounts of nutrients including phosphates in water is undesirable. They cause the deterioration of water quality and problems in many natural and engineering systems. The recycling of agricultural waste materials as biosorbents for contaminants removal provides a cheap and ecological means to reduce wastes. This study explored the use of date palm wastes for the effective removal of phosphate from aqueous solutions. Granular date stones (GDS) and palm surface fibres (PSF) as raw abundant waste materials were examined for PO4 -3 removal from aqueous solution. The experimental work was performed in a batch mode to investigate the influence of initial phosphate concentration, contact time, and pH of solution on phosphate biosorption. The FT-IR spectra for the waste materials display many adsorption peaks, confirming the complex nature of the GDS and PSF. Phosphate percentage removal up to 87 and 85% were obtained at initial PO4 -3 concentration of 50 mg as P/L using GDS and PSF, respectively. Due to their low cost and high capability, these types of waste can be used for cost-effective removal of phosphate from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号