首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to examine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measurement, we introduce the LOD map--an alternative representation of LOD quality and a visual interface for navigating multiresolution data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.  相似文献   

2.
Multi-resolution techniques are required for rendering large volumetric datasets exceeding the size of the graphics card's memory or even the main memory. The cut through the multi-resolution volume representation is defined by selection criteria based on error metrics. For GPU-based volume rendering, this cut has to fit into the graphics card's memory and needs to be continuously updated due to the interaction with the volume such as changing the area of interest, the transfer function or the viewpoint. We introduce a greedy cut update algorithm based on split-and-collapse operations for updating the cut on a frame-to-frame basis. This approach is guided by a global data-based metric based on the distortion of classified voxel data, and it takes into account a limited download budget for transferring data from main memory into the graphics card to avoid large frame rate variations. Our out-of-core support for handling very large volumes also makes use of split-and-collapse operations to generate an extended cut in the main memory. Finally, we introduce an optimal polynomial-time cut update algorithm, which maximizes the error reduction between consecutive frames. This algorithm is used to verify how close to the optimum our greedy split-and-collapse algorithm performs.  相似文献   

3.
在三维体数据可视化处理过程中,选取一个好的视图可以提高对体数据理解的速度和效率.光投射算法是体绘制中一种非常重要的算法.由于该算法成熟,成像质量高,它已在许多医学可视化处理系统中得到了广泛的应用.为该算法提供了一种视图选择方法,它将信息熵公式与光投射算法结合在一起对所选视图质量的优劣做出客观的评价.该方法充分考虑了传递函数,数据分布和各个体素的可见度.方法既可以用于非交互可视化处理时对给定场景找到一幅最具可视化信息的视图;也可用于交互的可视化处理中引导用户确定好的视点,以便对所获取的可视化信息进一步地深入研究和探索.  相似文献   

4.
This paper describes an immersive system,called 3DIVE,for interactive volume data visualization and exploration inside the CAVE virtual environment.Combining interactive volume rendering and virtual reality provides a netural immersive environment for volumetric data visualization.More advanced data exploration operations,such as object level data manipulation,simulation and analysis ,are supported in 3DIVE by several new techniques,In particular,volume primitives and texture regions ae used for the rendering,manipulation,and collision detection of volumetric objects;and the region-based rendering pipeline is integrated with 3D image filters to provide an image-based mechanism for interactive transfer function design.The system has been recently released as public domain software for CAVE/ImmersaDesk users,and is currently being actively used by various scientific and biomedical visualization projects.  相似文献   

5.
The selection of an appropriate global transfer function is essential for visualizing time‐varying simulation data. This is especially challenging when the global data range is not known in advance, as is often the case in remote and in‐situ visualization settings. Since the data range may vary dramatically as the simulation progresses, volume rendering using local transfer functions may not be coherent for all time steps. We present an exploratory technique that enables coherent classification of time‐varying volume data. Unlike previous approaches, which require pre‐processing of all time steps, our approach lets the user explore the transfer function space without accessing the original 3D data. This is useful for interactive visualization, and absolutely essential for in‐situ visualization, where the entire simulation data range is not known in advance. Our approach generates a compact representation of each time step at rendering time in the form of ray attenuation functions, which are used for subsequent operations on the opacity and color mappings. The presented approach offers interactive exploration of time‐varying simulation data that alleviates the cost associated with reloading and caching large data sets.  相似文献   

6.
We present a novel approach for interactive rendering of massive 3D models. Our approach integrates adaptive sampling-based simplification, visibility culling, out-of-core data management and level-of-detail. We use a unified scene graph representation for acceleration techniques. In preprocessing, we subdivide large objects, and build a BVH clustering hierarchy. We make use of a novel adaptive sampling method to generate LOD models: AdaptiveVoxels. The AdaptiveVoxels reduces the preprocessing cost and our out-of-core rendering algorithm improves rendering efficiency. We have implemented our algorithm on a desktop PC. We can render massive CAD and isosurface models, consisting of hundreds of millions of triangles interactively with little loss in image quality.  相似文献   

7.
This paper presents a procedure for virtual autopsies based on interactive 3D visualizations of large scale, high resolution data from CT-scans of human cadavers. The procedure is described using examples from forensic medicine and the added value and future potential of virtual autopsies is shown from a medical and forensic perspective. Based on the technical demands of the procedure state-of-the-art volume rendering techniques are applied and refined to enable real-time, full body virtual autopsies involving gigabyte sized data on standard GPUs. The techniques applied include transfer function based data reduction using level-of-detail selection and multi-resolution rendering techniques. The paper also describes a data management component for large, out-of-core data sets and an extension to the GPU-based raycaster for efficient dual TF rendering. Detailed benchmarks of the pipeline are presented using data sets from forensic cases.  相似文献   

8.
Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.  相似文献   

9.
10.
Interactive selection is a critical component in exploratory visualization, allowing users to isolate subsets of the displayed information for highlighting, deleting, analysis, or focused investigation. Brushing, a popular method for implementing the selection process, has traditionally been performed in either screen space or data space. In this paper, we introduce an alternate, and potentially powerful, mode of selection that we term structure-based brushing, for selection in data sets with natural or imposed structure. Our initial implementation has focused on hierarchically structured data, specifically very large multivariate data sets structured via hierarchical clustering and partitioning algorithms. The structure-based brush allows users to navigate hierarchies by specifying focal extents and level-of-detail on a visual representation of the structure. Proximity-based coloring, which maps similar colors to data that are closely related within the structure, helps convey both structural relationships and anomalies. We describe the design and implementation of our structure-based brushing tool. We also validate its usefulness using two distinct hierarchical visualization techniques, namely hierarchical parallel coordinates and tree-maps. Finally, we discuss relationships between different classes of brushes and identify methods by which structure-based brushing could be extended to alternate data structures  相似文献   

11.
This paper describes a new out-of-core multi-resolution data structure for real-time visualization, interactive editing and externally efficient processing of large point clouds. We describe an editing system that makes use of the novel data structure to provide interactive editing and preprocessing tools for large scanner data sets. Using the new data structure, we provide a complete tool chain for 3D scanner data processing, from data preprocessing and filtering to manual touch-up and real-time visualization. In particular, we describe an out-of-core outlier removal and bilateral geometry filtering algorithm, a toolset for interactive selection, painting, transformation, and filtering of huge out-of-core point-cloud data sets and a real-time rendering algorithm, which all use the same data structure as storage backend. The interactive tools work in real-time for small model modifications. For large scale editing operations, we employ a two-resolution approach where editing is planned in real-time and executed in an externally efficient offline computation afterwards. We evaluate our implementation on example data sets of sizes up to 63 GB, demonstrating that the proposed technique can be used effectively in real-world applications.  相似文献   

12.
In this paper we present a new approach for interactive view-dependent rendering of large polygonal data sets which relies on advanced features of modern graphics hardware. Our preprocessing algorithm starts by generating a simplified representation of the input mesh. It then builds a multiresolution hierarchy for the simplified model. For each face in the hierarchy, it generates and assigns a displacement map that resembles the original surface represented by that face. At runtime, the multiresolution hierarchy is used to select a coarse view-dependent level-of-detail representation, which is sent to the graphics hardware. The GPU then refines the coarse representation by replacing each face with a planar tile, which is elevated according to the assigned displacement map. Our results show that our implementation achieves quality images at high frame rates.  相似文献   

13.
Geospatial datasets from satellite observations and model simulations are becoming more accessible. These spatiotemporal datasets are relatively massive for visualization to support advanced analysis and decision making. A challenge to visualizing massive geospatial datasets is identifying critical spatial and temporal changes reflected in the data while maintaining high interactive rendering speed, even when data are accessed remotely. We propose a view-dependent spatiotemporal saliency-driven approach that facilitates the discovery of regions showing high levels of spatiotemporal variability and reduces the rendering intensity of interactive visualization. Our method is based on a novel definition of data saliency, a spatiotemporal tree structure to store visual saliency values, as well as a saliency-driven view-dependent level-of-detail (LOD) control. To demonstrate its applicability, we have implemented the approach with an open-source remote visualization package and conducted experiments with spatiotemporal datasets produced by a regional dust storm simulation model. The results show that the proposed method may not be outstanding in some specific situations, but it consistently performs very well across different settings according to different criteria.  相似文献   

14.
We present a novel interactive framework for improving 3D reconstruction starting from incomplete or noisy results obtained through image-based reconstruction algorithms. The core idea is to enable the user to provide localized hints on the curvature of the surface, which are turned into constraints during an energy minimization reconstruction. To make this task simple, we propose two algorithms. The first is a multi-view segmentation algorithm that allows the user to propagate the foreground selection of one or more images both to all the images of the input set and to the 3D points, to accurately select the part of the scene to be reconstructed. The second is a fast GPU-based algorithm for the reconstruction of smooth surfaces from multiple views, which incorporates the hints provided by the user. We show that our framework can turn a poor-quality reconstruction produced with state of the art image-based reconstruction methods into a high- quality one.  相似文献   

15.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

16.
We present an approach to visualizing particle-based simulation data using interactive ray tracing and describe an algorithmic enhancement that exploits the properties of these data sets to provide highly interactive performance and reduced storage requirements. This algorithm for fast packet-based ray tracing of multilevel grids enables the interactive visualization of large time-varying data sets with millions of particles and incorporates advanced features like soft shadows. We compare the performance of our approach with two recent particle visualization systems: one based on an optimized single ray grid traversal algorithm and the other on programmable graphics hardware. This comparison demonstrates that the new algorithm offers an attractive alternative for interactive particle visualization.  相似文献   

17.
Urban environments present unique challenges to interactive visualization systems, because of the huge complexity of the geometrical data and the widely varying visibility conditions. This paper introduces a new framework for real-time visualisation of such urban scenes. The central concept is that of a dynamic segmentation of the dataset, into a local three-dimensional model and a set of impostors used to represent distant scenery. A segmentation model is presented, based on inherent urban structure. A new impostor structure is introduced, derived from the level-of-detail approach. Impostors combine three-dimensional geometry to correctly model large depth discontinuities and parallax, and textures to rapidly display visual detail. We present the algorithms necessary for the creation of accurate and efficient three-dimensional impostors. The implementation of our algorithms allows interactive navigation in complex urban databases, as required by many applications.  相似文献   

18.
In this paper, we present an interactive high dynamic range volume visualization framework (HDR VolVis) for visualizing volumetric data with both high spatial and intensity resolutions. Volumes with high dynamic range values require high precision computing during the rendering process to preserve data precision. Furthermore, it is desirable to render high resolution volumes with low opacity values to reveal detailed internal structures, which also requires high precision compositing. High precision rendering will result in a high precision intermediate image (also known as high dynamic range image). Simply rounding up pixel values to regular display scales will result in loss of computed details. Our method performs high precision compositing followed by dynamic tone mapping to preserve details on regular display devices. Rendering high precision volume data requires corresponding resolution in the transfer function. To assist the users in designing a high resolution transfer function on a limited resolution display device, we propose a novel transfer function specification interface with nonlinear magnification of the density range and logarithmic scaling of the color/opacity range. By leveraging modern commodity graphics hardware, multiresolution rendering techniques and out-of-core acceleration, our system can effectively produce an interactive visualization of large volume data, such as 2.048/sup 3/.  相似文献   

19.
In this paper, we present an efficient (topology preserving) multiresolution meshing framework for interactive level-of-detail (LOD) generation and rendering of large triangle meshes. More specifically, the presented approach, called FastMesh, provides view-dependent LOD generation and real-time mesh simplification that minimizes visual artifacts. Multiresolution triangle mesh representations are an important tool for reducing triangle mesh complexity in interactive rendering environments. Ideally, for interactive visualization, a triangle mesh is simplified to the maximal tolerated visible error and, thus, mesh simplification is view-dependent. This paper introduces an efficient hierarchical multiresolution triangulation framework based on a half-edge triangle mesh data structure and presents optimized implementations of several view-dependent or visual mesh simplification heuristics within that framework. Despite being optimized for performance, these error heuristics provide conservative error bounds. The presented framework is highly efficient both in space and time cost and needs only a fraction of the time required for rendering to perform the error calculations and dynamic mesh updates.  相似文献   

20.
We present an algorithm for performing adaptive real-time level-of-detail-based rendering for triangulated polygonal models. The simplifications are dependent on viewing direction, lighting, and visibility and are performed by taking advantage of image-space, object-space, and frame-to-frame coherences. In contrast to the traditional approaches of precomputing a fixed number of level-of-detail representations for a given object, our approach involves statically generating a continuous level-of-detail representation for the object. This representation is then used at run time to guide the selection of appropriate triangles for display. The list of displayed triangles is updated incrementally from one frame to the next. Our approach is more effective than the current level-of-detail-based rendering approaches for most scientific visualization applications, where there are a limited number of highly complex objects that stay relatively close to the viewer. Our approach is applicable for scalar (such as distance from the viewer) as well as vector (such as normal direction) attributes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号