首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-performance reconfigurable low-pass filter based on the quasifractal self-similar structures has been developed at millimeter-waves using multiple-contact MEMS switches. Three-cell cascaded low-pass structure was reconfigured to one-cell low-pass counterpart by activating the micromachined switches to achieve 3:1 frequency scaling. Two types of special multiple-contact MEMS switches were developed to reduce the number of switching elements as well as to reduce the insertion loss and, thus, extend the operating frequencies to mm-waves. In addition, bias-decoupling circuits were eliminated, resulting in a small chip size of 1.2 mm /spl times/ 1.5 mm. The measured 3-dB cut-off frequency of the reconfigurable low-pass filter changed from 67 GHz to 28 GHz with minor change in the insertion loss from 0.32 dB to 0.27 dB. This work demonstrates the possibility of high-performance compact-size reconfigurable filters at mm-waves using multiple-contact micromachined switches.  相似文献   

2.
Miniature low-loss CPW periodic structures for filter applications   总被引:1,自引:0,他引:1  
Several novel periodic structures for coplanar waveguides are presented. The proposed structures exhibit low insertion loss in the passband, simple fabrication, and slow-wave characteristics. These structures are applied to realize miniature low-pass filters one-tenth the size of conventional filters, with spurious-free response and deep attenuation levels using only three cells  相似文献   

3.
《Electronics letters》2007,43(12):675-677
The design and realisation of original millimetre-wave tunable bandstop filters using MEMS (micro-electro-mechanical-systems) technology for millimetre-wave applications is presented. The tunable behaviour is achieved by using MEMS switches. The overall structures, including the MEMS switches, have been manufactured using dielectric membrane in order to minimise the dielectric losses. Experimental validations are reported and validate the proposed topology: the bandstop frequency is shifted by approximately 3.5 GHz in V-band when the switches are actuated  相似文献   

4.
A 5-bit lumped CMOS step attenuator with low insertion loss and low phase distortion is designed and simulated in this paper. The proposed attenuator is based on lumped switched bridged-T and π structure attenuators, and implemented with 0.18-μm CMOS technology. Different attenuation states are controlled by NMOS switches. The switches in series branches have channel-shunt resistance to minimize the on-resistance without increasing parasitic capacitance. The NMOS switches in shunt branches are body-floated to improve the power handling performance of the proposed attenuator. Each attenuation module has an inductive phase-compensate low-pass network. The attenuator is controlled with a 5-bit digital signal to achieve the maximum attenuation amplitude range of 0–31 dB with 1 dB increase at 3–22 GHz. The root mean square (RMS) amplitude errors for each one of the 32 states are less than 0.53 dB and the RMS insertion phase is less than 6.3° at 3–22 GHz. The insertion loss is 5.5–13 dB, and the input P1 dB is 18.4 dBm at 12.5 GHz.  相似文献   

5.
In this paper, a novel programmable current-mode multiphase voltage controlled oscillator (MVCO) is presented. The proposed MVCO consists of four identical first-order all-pass filters, which act for delay cells of the MVCO. By switching the programmable MOS switches on and off, the MVCO can provide six or eight different phase sinusoidal signals. Theoretically, the proposed MVCO can provide 2n (n ? 3) different phase sinusoidal signals by cascading n (n ? 3) first-order all-pass delay cells. Compared with previous reported works, this MVCO has the advantages of lower supply voltage, lower power consumption, a smaller chip area and more multi-outputs than other reported works. In particularly, by using programmable switches and cascading more first-order all-pass delay cells, the proposed MVCO can theoretically provide 2n (n ? 3) different phase sinusoidal signals.  相似文献   

6.
A low-frequency piezoelectric energy harvester based on impact vibration assembled with a compliant driving beam and two rigid generating beams is presented. The ambient low frequency is up-converted to high resonant frequency by the periodic impact between the driving beam and the generating beams. The advantages of the harvester are: restricting the large displacement of the compliant driving beam, improving power density and being especially suitable for a compact MEMS approach. The 1.53 mW average power of the macroscale impact vibration harvester is achieved at 20.1 Hz under 0.4g acceleration. The power density is 93.2 μW/cm3, which is 6.8 times that of conventional counterpart (13.6 μW/cm3). The measured results demonstrate the potential of the device applied to portable and implantable electronics benefited from the MEMS batch-fabrication technology.  相似文献   

7.
Micro-electro-mechanic-system (MEMS) devices on flexible substrate are important for non-planar and non-rigid surface applications. In this paper, a novel and cost-effective fabrication process for an 8 × 8 MEMS temperature sensor array with a lateral dimension of 2.5 mm × 5.5 mm on a polyimide flexible substrate is developed. A 40 μm thick polyimide substrate is formed on a rigid silicon wafer using as a mechanical carrier throughout the fabrication by four successive spin coating liquid polyimide. The arrayed temperature sensing elements made of 1200 Å sputtered platinum thin film on polyimide substrate show excellent linearity with a temperature coefficient of resistance of 0.0028/°C. The purposed sensor obtains a high sensitivity of 0.781 Ω/°C at 8 mA at constant drive current. Because of the low heat capacity and excellent thermal isolation, the temperature sensing element shows excellent high sensitivity and a fast thermal response. The finished devices are flexible enough to be folded and twisted achieving any desired shape and form. Employing spin-coated liquid polyimide substrate instead of solid polyimide sheet minimizes the thermal cycling as well as improves the production yield. This fabrication technique first introduces the spin-coated PDMS (Polydimethylsiloxane) interlayer between the silicon carrier and the polyimide substrate and makes the polyimide-based devices separate much easier and greatly simplifies the fabrication process with a high production yield. A non-successive two-stage cure procedure for the polyimide precursor is developed to meet low-temperature requirement of the PDMS interlayer. The fabrication procedure developed in this research is compatible with conventional MEMS technology through an optimized integration process. The novel flexible MEMS technology can benefit the development of other new flexible polyimide-based devices.  相似文献   

8.
MEMS开关可重构矩形缝隙环天线的设计   总被引:2,自引:1,他引:1  
提出一种基于MEMS开关的可重构矩形缝隙环天线设计.其关键部件之一是射频微波MEMS开关,选取了接触式MEMS开关.该天线为用共面波导馈电的多频率可重构天线,通过多个MEMS开关来改变矩形缝隙环天线的拓扑结构,按照一定的规则控制开关可实现多频率可重构.其结构简单,剖面低,易于与电路集成.  相似文献   

9.
This paper presents an innovative polishing process aimed at leveling rough surface of plating-based flip chip solder bumps so as to get uniform coplanarity across the whole substrate after both electroplating and reflow processes. This polishing mechanism is characteristic of combining mechanical-dominated polishing force with slight chemical reaction together. A large number of extremely but inevitably rugged mushroom-like structures after electroplating are drastically smoothed down with the help of this newly-developed polishing process. Nearly 70 μm solder bumps in height with two different profiles as square and circle on the substrates reach as flatly as ±3 μm between different substrates after reflow process; ±2.5 μm in single substrate; and even ±1 μm in die, respectively. Besides, surface roughness among the solder bumps is simultaneously narrowed down from Ra 0.6 to Ra 0.03 along with the coplanarity improvement. Excellent uniformity and smooth surface roughness in solder bumps are absolutely beneficial to pile up and deposit in the following steps in MEMS and semiconductor fields.  相似文献   

10.
This paper focused on a new direction of study on leakage current called substrate charge injection. The substrate leakage current of capacitive RF micro-electro-mechanical-system (MEMS) switches was measured, and the conduction mechanism was estimated. The study of the leakage current conduction mechanisms of the substrate dielectric film shows that leakage is mainly induced by hopping conduction at low electric fields, whereas both Schottky emission and hopping conduction may contribute to the leakage current at high fields. The quantitative relationship between the substrate leakage current and the dielectric layer leakage current was also determined for the first time. In the case of low drive voltage (0–30 V), the substrate leakage current significantly contributes to the total leakage current. Results show that the charging properties of the substrate should not be neglected at low drive voltage because such properties could significantly affect the functionality and reliability of RF MEMS switches.  相似文献   

11.
This paper presents a novel 4-bit phase shifter using distributed active switches in 0.18-mum RF CMOS technology. The relative phase shift, which varies from 0deg to 360deg in steps of 22.5deg, is achieved with a 3-bit distributed phase shifter and a 180deg high-pass/low-pass phase shifter. The distributed phase shifter is implemented using distributed active switches that consist of a periodic placement of series inductors and cascode transistors, thereby obtaining linear phase shift versus frequency with a digital control. The design guideline of the distributed phase shifter is presented. The 4-bit phase shifter achieves 3.5 plusmn 0.5 dB of gain, with an rms phase error of 2.6deg at a center frequency of 12.1 GHz. The input and output return losses are less than -15 dB at all conditions. The chip size is 1880 mum times 915 mum including the probing pads.  相似文献   

12.
提出一种适合于分析微波分布式MEMS移相器静电驱动电容开关的开启时间和动态特性的新方法。采用IntelliSuite~(TM)模拟工具的SYNPLE模块研究材料、驱动电压、MEMS桥高度和共面波导信号线宽度对电容开启时间的影响。通过优化参数,分析结果表明:对于金电容开关,V=40 V、g_0=2.5μm和W=100μm,开关的开启时间为~7μs。  相似文献   

13.
This paper describes the design of a low cost, low-power ZigBee receiver for wireless sensor networks. The receiver consists of a low-noise amplifier, a pair of down-conversion mixers, and a pair of variable-gain low-pass filters. The LNA has a single-ended input, eliminating the need for an off-chip balun, a differential output, allowing it to drive a double-balanced mixer, and it uses noise cancellation to improve its noise performance. The mixers are double-balanced passive mixers to improve the receiver linearity and decrease its power consumption and flicker noise. Finally, the filter is a third-order Butterworth Gm-C filter with a variable input transconductor to provide gain programmability for the receiver. The design is made using 130 nm CMOS technology with 1.2 V supply. Simulation results show that the receiver can achieve a sensitivity level of −97 dBm while consuming only 6 mA.  相似文献   

14.
为了有效解决信号/频谱分析仪等微波测试仪器尺寸较大、信号损耗高、选通切换效率差等问题,将射频MEMS开关引入交指型可切换滤波器结构中。通过MEMS四掷开关选择具有不同中心频率的交指型谐振器,实现在6~14 GHz内四个频率的射频信号切换过滤。利用HFSS电磁波仿真软件对滤波结构的几何参数进行优化计算,得到四个可切换频率的插入损耗,分别为1.26 dB@6.86 GHz、1.03 dB@9.16 GHz、1.23dB@11.78 GHz、1.07 dB@12.26 GHz,整体面积约为7.95 mm3。与其他可切换滤波器相比,该可切换滤波器将MEMS四掷开关与交指型谐振器集成到一起,具有低插损、小尺寸、高集成度等优点。  相似文献   

15.
针对具有低损耗、高隔离度性能的微机电系统(Micro-Electro-Mechanical System,MEMS)开关,介绍了串联DC式和并联电容式的开关结构模型,并对并联电容式MEMS开关的工作原理、等效电路模型和制造工艺流程进行了描述,利用其模型研究了开关的微波传输性能,设计了一款电容耦合式开关并进行了仿真。由仿真结果可得,开关"开态"时的插入损耗在40 GHz以内优于-0.3 dB;开关"关态"时的隔离度在20~40 GHz相对较宽的频带内优于-20 dB。  相似文献   

16.
The effect of Brownian, acceleration, acoustic, and power-supply noise on MEMS based circuits has been calculated for MEMS.-based circuits (phase shifters, delay circuits). The calculations are done for capacitive shunt MEMS switches and metal-to-metal contact series MEMS switches. It is found that these effects result in both an amplitude and phase noise, with the phase noise being around 100× larger than the amplitude noise. The phase noise due to Brownian motion is negligible for MEMS switches with k ≃ 1.0 N/m, g0 > 2 μm, Q > 0.5, and f0 ≃ 50 kHz. The effect of acceleration and acoustic noise is negligible for a total acceleration noise of 10 g or less and a total acoustic noise of 74-dB sound pressure level. The power-supply noise depends on the bias conditions of the MEMS element, but is negligible for MEMS switches with a bias voltage of 0 V and a total noise voltage of 0.1 V or less. It is also found that metal-to-metal contact series switches result in much less phase noise than standard capacitive shunt switches. The phase noise increases rapidly for low spring-constant bridges (k = 0.24 N/m), low-height bridges, and bridges with a large mechanical damping (Q < 0.3). Also, varactor-based designs result in 30-40 dB more phase noise than switch-based circuits. This paper proves that microwave passive circuits built using MEMS switches (with a proper mechanical design) can be used in most commercial and military applications without any phase-noise penalty  相似文献   

17.
宋明歆  殷景华  贺训军  朱敏  曹一江   《电子器件》2007,30(5):1547-1551
介绍了一种基于扭转的新型低压电容式RFMEMS开关的设计.此开关在保留传统挠曲变形的基础上,引入了扭转变形,并利用Intelli Suite等软件进行仿真分析.理论分析和仿真结果表明:与传统弯曲变形不同,在扭转变形中,变形对臂的厚度远比宽度敏感;在保留传统挠曲变形的基础上,增加了扭转变形,将有效降低驱动电压.理论分析还表明增长扭转臂、从动臂可使驱动电压明显下降.通过优化结构设计,在扭转臂、从动臂长为180μm、120μm,臂宽为5μm,厚为1μm,驱动电极面积为120μm×120μm时,仿真得到驱动电压为1.5V.  相似文献   

18.
MEMS 光开关技术的研究进展   总被引:2,自引:0,他引:2  
葛峻  秦明 《电子器件》2003,26(3):244-247
近年来国际上出现的一些新型MEMS光开关,包括其结构、驱动方式、规模等。并且通过对基于各种不同工作机理的光开关之问,性能、结构及可实行产业化程度等各方面数据的分析比较,认为MEMS光开关在现代光通讯领域具有较好的应用发展前景。  相似文献   

19.
A dual mode UHF RFID transponder in 0.18 μm CMOS conforming to the EPC Gen 2 standard is presented. Low voltage design of the analog and digital blocks enables the chip to operate with a 1 V regulated voltage and thus to reduce the power consumption. The novel dual mode architecture enables the chip to work in passive and battery-assisted modes controlled by the reader. A custom Gen 2 based command switches the operation mode of the circuit. By using a special clock calibration method the chip operates from 1.2 to 5 MHz clock frequency. Several low power techniques are employed to reduce the power consumption of the chip which is essential in passive RFID tags. Measurement results show that the chip consumes 12 μW at 1 V supply voltage when it communicates with the reader. The chip is fabricated in 0.18 μm standard CMOS technology and occupies 0.95 mm2 die area.  相似文献   

20.
In many applications such as optoelectronic devices, three-dimensional (3D) structures are required. Examples include photonic band gap (PBG) crystals, diffractive optical elements, blazed gratings, MEMS, NEMS, etc. It is known that the performance characteristics of such structures are highly sensitive to their dimensional fidelity. Therefore, it is essential to have a fabrication process by which such 3D structures can be realized with high dimensional accuracy. In this paper, practical methods to control thickness of the remaining resist and etch depth, which may be employed for fabrication of such 3D structures using grayscale electron-beam lithography, are described. Through experiments, explicit control of the remaining resist thickness and etch depth at the resolution of 20 nm for the feature sizes of 0.5 μm and 1 μm has been successfully demonstrated. Also, the 1:1 ratio of silicon to resist etching rates was achieved for transferring the remaining resist profile onto the silicon substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号