首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polypeptide binding and release cycle of the molecular chaperone DnaK (Hsp70) of Escherichia coli is regulated by the two co-chaperones DnaJ and GrpE. Here, we show that the DnaJ-triggered conversion of DnaK.ATP (T state) to DnaK.ADP.Pi (R state), as monitored by intrinsic protein fluorescence, is monophasic and occurs simultaneously with ATP hydrolysis. This is in contrast with the T-->R conversion in the absence of DnaJ which is biphasic, the first phase occurring simultaneously with the hydrolysis of ATP (Theyssen, H., Schuster, H.-P., Packschies, L., Bukau, B., and Reinstein, J. (1996) J. Mol. Biol. 263, 657-670). Apparently, DnaJ not only stimulates ATP hydrolysis but also couples it with conformational changes of DnaK. In the absence of GrpE, DnaJ forms a tight ternary complex with peptide.DnaK.ADP.Pi (Kd = 0.14 microM). However, by monitoring complex formation between DnaK (1 microM) and a fluorophore-labeled peptide in the presence of ATP (1 mM), DnaJ (1 microM), and varying concentrations of the ADP/ATP exchange factor GrpE (0.1-3 microM), substoichiometric concentrations of GrpE were found to shift the equilibrium from the slowly binding and releasing, high-affinity R state of DnaK completely to the fast binding and releasing, low-affinity T state and thus to prevent the formation of a long lived ternary DnaJ. substrate.DnaK.ADP.Pi complex. Under in vivo conditions with an estimated chaperone ratio of DnaK:DnaJ:GrpE = 10:1:3, both DnaJ and GrpE appear to control the chaperone cycle by transient interactions with DnaK.  相似文献   

2.
Molecular chaperones of the Hsp70 class bind unfolded polypeptide chains and are thought to be involved in the cellular folding pathway of many proteins. DnaK, the Hsp70 protein of Escherichia coli, is regulated by the chaperone protein DnaJ and the cofactor GrpE. To gain a biologically relevant understanding of the mechanism of Hsp70 action, we have analyzed a model reaction in which DnaK, DnaJ, and GrpE mediate the folding of denatured firefly luciferase. The binding and release of substrate protein for folding involves the following ATP hydrolysis-dependent cycle: (i) unfolded luciferase binds initially to DnaJ; (ii) upon interaction with luciferase-DnaJ, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable luciferase-DnaK-DnaJ complex; (iii) GrpE releases ADP from DnaK; and (iv) ATP binding to DnaK triggers the release of substrate protein, thus completing the reaction cycle. A single cycle of binding and release leads to folding of only a fraction of luciferase molecules. Several rounds of ATP-dependent interaction with DnaK and DnaJ are required for fully efficient folding.  相似文献   

3.
In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.  相似文献   

4.
DnaK, the bacterial homolog of the eukaryotic hsp70 proteins, is an ATP-dependent chaperone whose basal ATPase is stimulated by synthetic peptides and its cohort heat shock proteins, DnaJ and GrpE. We have used three mutant DnaK proteins, E171K, D201N, and A174T (corresponding to Glu175, Asp206, and Ala179, respectively, in bovine heat stable cognate 70) to probe the ATPase cycle. All of the mutant proteins exhibit some alteration in basal ATP hydrolysis. However, they all exhibit more severe defects in the regulated activities. D201N and E171K are completely defective in all regulated activities of the protein and also in making the conformational change exhibited by the wt protein upon binding ATP. We suggest that the inability of D201N and E171K to achieve the ATP activated conformation prevents both stimulation by all effectors and the ATP-mediated release of GrpE. In contrast, the defect of A174T is much more specific. It exhibits normal binding and release of GrpE and normal stimulation of ATPase activity by DnaJ. However, it is defective in the synergistic activation of its ATPase by DnaJ and GrpE. We suggest that this mutant protein is specifically defective in a DnaJ/GrpE mediated conformational change in DnaK necessary for the synergistic action of DnaJ+GrpE.  相似文献   

5.
Heat-shock proteins DnaK, DnaJ, and GrpE (KJE) from Escherichia coli constitute a three-component chaperone system that prevents aggregation of denatured proteins and assists the refolding of proteins in an ATP-dependent manner. We found that the rate of KJE-mediated refolding of heat- and chemically denatured proteins is decreased at high temperatures. The efficiency and reversibility of protein-folding arrest during and after heat shock depended on the stability of the complex between KJE and the denatured proteins. Whereas a thermostable protein was released and partially refolded during heat shock, a thermolabile protein remained bound to the chaperone. The apparent affinity of GrpE and DnaJ for DnaK was decreased at high temperatures, thereby decreasing futile consumption of ATP during folding arrest. The coupling of ATP hydrolysis and protein folding was restored after the stress. This strongly indicates that KJE chaperones are heat-regulated heat-shock proteins which can specifically arrest the folding of aggregation-prone proteins during stress and preferentially resume refolding under conditions that allow individual proteins to reach and maintain a stable native conformation.  相似文献   

6.
The Escherichia coli Hsp40 DnaJ and Hsp70 DnaK cooperate in the binding of proteins at intermediate stages of folding, assembly, and translocation across membranes. Binding of protein substrates to the DnaK C-terminal domain is controlled by ATP binding and hydrolysis in the N-terminal ATPase domain. The interaction of DnaJ with DnaK is mediated at least in part by the highly conserved N-terminal J-domain of DnaJ that includes residues 2-75. Heteronuclear NMR experiments with uniformly 15N-enriched DnaJ2-75 indicate that the chemical environment of residues located in helix II and the flanking loops is perturbed on interaction with DnaK or a truncated DnaK molecule, DnaK2-388. NMR signals corresponding to these residues broaden and exhibit changes in chemical shifts in the presence of DnaK(MgADP). Addition of MgATP largely reversed the broadening, indicating that NMR signals of DnaJ2-75 respond to ATP-dependent changes in DnaK. The J-domain interaction is localized to the ATPase domain of DnaK and is likely to be dominated by electrostatic interactions. The results suggest that the J-domain tethers DnaK to DnaJ-bound substrates, which DnaK then binds with its C-terminal peptide-binding domain.  相似文献   

7.
The anti-cell death protein BAG-1 binds to 70-kDa heat shock proteins (Hsp70/Hsc70) and modulates their chaperone activity. Among other facilitory roles, BAG-1 may serve as a nucleotide exchange factor for Hsp70/Hsc70 family proteins and thus represents the first example of a eukaryotic homologue of the bacterial co-chaperone GrpE. In this study, the interactions between BAG-1 and Hsc70 are characterized and compared with the analogous GrpE-DnaK bacterial system. In contrast to GrpE, which binds DnaK as a dimer, BAG-1 binds to Hsc70 as a monomer with a 1:1 stoichiometry. Dynamic light scattering, sedimentation equilibrium, and circular dichroism measurements provided evidence that BAG-1 exists as an elongated, highly helical monomer in solution. Isothermal titration microcalorimetry was used to determine the complex stoichiometry and an equilibrium dissociation constant, KD, of 100 nM. Kinetic analysis using surface plasmon resonance yielded a KD consistent with the calorimetrically determined value. Molecular modeling permitted a comparison of structural features between the functionally homologous BAG-1 and GrpE proteins. These data were used to propose a mechanism for BAG-1 in the regulation of Hsp70/Hsc70 chaperone activity.  相似文献   

8.
Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaK mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.  相似文献   

9.
Members of the hsp70 family of molecular chaperones interact with and stabilize nascent polypeptides during synthesis and/or translocation into organelles. The bacterial hsp70 homologue DnaK requires the DnaJ cofactor for its reaction cycle with polypeptide substrates. DnaJ stimulates the ATPase activity of the DnaK chaperone and thereby is thought to regulate the affinity of DnaK for its protein target. Herein we have analyzed some of the biochemical properties of two mammalian cytosolic DnaJ homologues, the hdj-1 and hdj-2 proteins. We were particularly interested in examining the proposal that DnaJ homologues are the first molecular chaperones to interact directly with nascent polypeptides. Nascent/newly synthesized proteins, nascent polypeptides released from the ribosome by puromycin, or polypeptides misfolded as a result of incorporation of an amino acid analogue were not found in complexes with either of the two HeLa cell DnaJ homologues. We still were unable to demonstrate any interactions between hdj-1p and nascent/newly synthesized proteins even after chemical cross-linking. We did find that hdj-1p, like bacterial DnaJ, stimulated the ATPase activity of hsp70. Stable complex formation between hsp70 and an unfolded polypeptide substrate in vitro was found to be reduced in the presence of hdj-1p and ATP. Thus, while hdj-1p likely does function as a cofactor for the hsp70 chaperone, having effects on hsp70's ATPase activity and conformation/oligomeric structure and the stability of hsp70-substrate complexes, it was not observed to interact directly with nascent/newly synthesized proteins. Rather, hdj-1p likely serves a regulatory role, governing the reaction cycle of hsp70 with polypeptide substrates.  相似文献   

10.
Hsp70 chaperones assist protein folding by ATP-controlled cycles of substrate binding and release. ATP hydrolysis is the rate-limiting step of the ATPase cycle that causes locking in of substrates into the substrate-binding cavity of Hsp70. This key step is strongly stimulated by DnaJ cochaperones. We show for the Escherichia coli Hsp70 homolog, DnaK, that stimulation by DnaJ requires the linked ATPase and substrate-binding domains of DnaK. Functional interaction with DnaJ is affected by mutations in an exposed channel located in the ATPase domain of DnaK. It is proposed that binding to this channel, possibly involving the J-domain, allows DnaJ to couple substrate binding with ATP hydrolysis by DnaK. Evolutionary conservation of the channel and the J-domain suggests conservation of the mechanism of action of DnaJ proteins.  相似文献   

11.
Previous biochemical and genetic studies have demonstrated the universal conservation of the DnaK (Hsp70) chaperone machine. Its three members, DnaK, DnaJ, and GrpE, in Escherichia coli work synergistically to promote protein protection, disaggregation, and import into the various organelles. In the mitochondria of Saccharomyces cerevisiae the three corresponding members are designated as Ssc1p, Mdj1p, and Mge1p, respectively. The MGE1 gene was previously cloned by us and others, and its product has been shown to be absolutely essential for protein transport into mitochondria and hence cell viability. To better understand its biological role, we have proceeded to overexpress and purify the mature Mge1p in E. coli through the construction of the appropriate vector clone. Mge1p has been shown to functionally substitute for its E. coli GrpE counterpart in a variety of its biological functions, including suppression of the bacterial temperature-sensitive phenotype of the grpE280 mutation, formation of a stable complex with DnaK, stimulation of DnaK's ATPase activity, and the refolding of denatured luciferase by the DnaK/DnaJ chaperone proteins. Thus, the function of the GrpE homologues appears to be highly conserved across the biological kingdoms.  相似文献   

12.
DnaK, the 70 kDa molecular chaperone of Escherichia coli, adopts a high-affinity state in the presence of ADP that tightly binds its target peptide, whereas replacement of ADP by ATP induces a structural switch to a low-affinity chaperone state that weakly binds its target. An approximately 15% decrease in tryptophan fluorescence of DnaK occurs in concert with this switch from the high- to low-affinity state. The reversibility of this structural transition in DnaK was investigated using rapid mixing and equilibrium fluorescence methods. The Cro peptide (MQERITLKDYAM) was used to mimic an unfolded substrate. When the Cro peptide is rapidly mixed with preformed low-affinity DnaK complexes (DnaK-ATP), a rapid increase (kobs = 3-30 s-1) in the tryptophan fluorescence of DnaK occurs. We suggest that the Cro peptide induces the transition of the low-affinity state of DnaK back to the high-affinity state, without ATP hydrolysis. The combined results in this report are consistent with the minimal mechanism ATP + EP if ATP-EP if ATP-E + P, where ATP binding (K1) induces a conformational change and concerted peptide release (koff), and peptide binding (kon) to the low-affinity state (ATP-E) induces the transition back to ATP-EP, a high-affinity state. At 25 degreesC, in the presence of the Cro peptide, values for K1, koff, and kon are 22 microM, 3.3 s-1, and 2. 4 x 10(4) M-1 s-1, respectively. Evidence for an equilibrium between closed and open forms of DnaK in the absence of ATP and peptide is also presented.  相似文献   

13.
The yeast mitochondrial GrpE homologue, Mge1, assists matrix Hsp70 in both protein translocation across the mitochondrial membranes and subsequent protein folding. We expressed mtHsp70 and Mge1 in Escherichia coli and analyzed their function in the ATP hydrolysis cycle. Mge1 stimulates ATP hydrolysis by mtHsp70 about twofold. Addition of inorganic phosphate inhibits ATP hydrolysis by preventing ADP release from mtHsp70. Mge1 has no direct effect on gamma-phosphate release from mtHsp70, yet indirectly relieves the phosphate inhibition by stimulating ADP release. We conclude that Mge1 promotes the ATPase cycle of mtHsp70 by increasing the rate of ADP release. ATP then rapidly binds to mtHsp70 such that the total amount of mtHsp70-bound nucleotide is not changed by Mge1.  相似文献   

14.
BACKGROUND: The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. RESULTS: The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. CONCLUSIONS: The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes in protein structure as a result of calcium binding may facilitate phosphorylation. A small, but significant, movement of metal ions and sidechains could position catalytically important threonine residues for phosphorylation. The second calcium site represents a new calcium-binding motif that can play a role in the stabilization of protein structure. We discuss how the information about catalytic events in the active site could be transmitted to the peptide-binding domain.  相似文献   

15.
The BAG-1 protein appears to inhibit cell death by binding to Bcl-2, the Raf-1 protein kinase, and certain growth factor receptors, but the mechanism of inhibition remains enigmatic. BAG-1 also interacts with several steroid hormone receptors which require the molecular chaperones Hsc70 and Hsp90 for activation. Here we show that BAG-1 is a regulator of the Hsc70 chaperone. BAG-1 binds to the ATPase domain of Hsc70 and, in cooperation with Hsp40, stimulates Hsc70's steady-state ATP hydrolysis activity approximately 40-fold. Similar to the action of the GrpE protein on bacterial Hsp70, BAG-1 accelerates the release of ADP from Hsc70. Thus, BAG-1 regulates the Hsc70 ATPase in a manner contrary to the Hsc70-interacting protein Hip, which stabilizes the ADP-bound state. Intriguingly, BAG-1 and Hip compete in binding to the ATPase domain of Hsc70. Our results reveal an unexpected diversity in the regulation of Hsc70 and raise the possibility that the observed anti-apoptotic function of BAG-1 may be exerted through a modulation of the chaperone activity of Hsc70 on specific protein folding and maturation pathways.  相似文献   

16.
Interactions of the DnaK (Hsp70) chaperone from Escherichia coli with substrates are controlled by ATP. Nucleotide-induced changes in DnaK conformation were investigated by monitoring changes in tryptic digestion pattern and tryptophan fluorescence. Using nucleotide-free DnaK preparations, not only the known ATP-induced major changes in kinetics and pattern of proteolysis but also minor ADP-induced changes were detected. Similar ATP-induced conformational changes occurred in the DnaK-T199A mutant protein defective in ATPase activity, demonstrating that they result from binding, not hydrolysis, of ATP. N-terminal sequencing and immunological mapping of tryptic fragments of DnaK identified cleavage sites that, upon ATP addition, appeared within the proposed C-terminal substrate binding region and disappeared in the N-terminal ATPase domain. They hence reflect structural alterations in DnaK correlated to substrate release and indicate ATP-dependent domain interactions. Domain interactions are a prerequisite for efficient tryptic degradation as fragments of DnaK comprising the ATPase and C-terminal domains were highly protease-resistant. Fluorescence analysis of the N-terminally located single tryptophan residue of DnaK revealed that the known ATP-induced alteration of the emission spectrum, proposed to result directly from conformational changes in the ATPase domain, requires the presence of the C-terminal domain and therefore mainly results from altered domain interaction. Analyses of the C-terminally truncated DnaK163 mutant protein revealed that nucleotide-dependent interdomain communication requires a 15-kDa segment assumed to constitute the substrate binding site.  相似文献   

17.
To determine the effect of mutations at the nucleotide-binding site of recombinant Hsp70 on its interaction with protein and peptide substrates, point mutations were made at D10 and K71, two residues at the active site. The D10S mutation weakened both ATP and ADP binding, while the K71E mutation weakened only ATP binding. In binding experiments using Hsp70 with no bound nucleotide, the mutated Hsp70s interacted with clathrin and peptide just like the wild-type Hsp70. However, the D10 mutation completely abolished the effects of both ATP and ADP on peptide and clathrin binding. The K71 mutation also abolished the effect of ATP on substrate binding, but ADP, which still bound tightly, had its normal effect on substrate binding. In addition, the D10S and K71E mutants had greatly reduced ability to uncoat clathrin-coated vesicles at pH 7.0, bind to clathrin baskets at pH 6.0, and undergo polymerization induced by YDJ1 in the presence of ATP. We conclude, first, that nucleotides must bind strongly to Hsp70 to affect substrate binding and, second, that interaction of Hsp70 with DnaJ homologues may also require a strongly bound ATP.  相似文献   

18.
BiP is a member of the Hsp70 heat shock protein family found in the lumen of the endoplasmic reticulum, that binds to a variety of proteins destined to be secreted. Substance P (SP) has been used as a model peptide to study the interaction of BiP with protein substrates. SP stimulates BiP ATPase activity and forms a stable complex with BiP that is dissociated in the presence of levels of ATP > 50 microM. At lower concentrations of ATP, the SP remains bound to BiP, and the results are consistent with the view that a BiP-ATP complex is initially formed that reacts with SP to form a ternary complex, SP-BiP-ATP. Hydrolysis of ATP in this complex yields a SP-BiP-ADP complex. An exchange of ATP with ADP bound to BiP has also been demonstrated, and the results suggest that the interactions of BiP with ATP resemble those seen with GTP-binding proteins and GTP.  相似文献   

19.
We previously reported the isolation of T.DnaK.DnaJ chaperone complex from Thermus thermophilus. Here, we show that a novel factor is necessary for the assembly of T.DnaK and T.DnaJ into the complex. A dnaK gene cluster of T. thermophilus contained five genes, dnaK-grpE-dnaJ-orf4-clpB. Interestingly, T.DnaJ lacks the whole "cysteine-rich region" that has been postulated to be necessary to bind unfolded proteins. The orf4 gene encodes a novel 78-amino acid protein. Curiously, T.DnaK and T.DnaJ expressed in Escherichia coli did not form the complex. Careful reexamination of the T.DnaK.DnaJ complex revealed the presence of a small protein in the complex, which turned out to be a product of orf4. As expected, expression of three genes, dnaK-dnaJ-orf4, resulted in production of a T.DnaK.DnaJ complex in E. coli that was indistinguishable from the authentic complex in its ability to interact with nucleotide and denatured protein. The product of orf4 was also required for in vitro reconstitution of the complex and named T.DafA (T.DnaK.DnaJ assembly factor A). The complex comprises three copies each of T.DnaK, T.DnaJ, and T.DafA. Even though a definite homolog of T.DafA has not been found in the data base, this finding raises a possibility that interaction between DnaK and DnaJ chaperones in other organisms is also mediated by a small protein yet unnoticed.  相似文献   

20.
The DnaK, DnaJ, and GrpE proteins of Escherichia coli have been universally conserved across the biological kingdoms and work together to constitute a highly efficient molecular chaperone machine. We have examined the extent of functional conservation of Saccharomyces cerevisiae Ssc1p, Mdj1p, and Mge1p by analyzing their ability to substitute for their corresponding E. coli homologs in vivo. We found that the expression of yeast Mge1p, the GrpE homolog, allowed for the deletion of the otherwise essential grpE gene of E. coli, albeit only up to 40 degrees C. The inability of Mge1p to substitute for GrpE at very high temperatures is consistent with our previous finding that it specifically failed to stimulate DnaK's ATPase at such extreme conditions. In contrast to Mge1p, overexpression of Mdj1p, the DnaJ homolog, was lethal in E. coli. This toxicity was specifically relieved by mutations which affected the putative zinc binding region of Mdj1p. Overexpression of a truncated version of Mdj1p, containing the J- and Gly/Phe-rich domains, partially substituted for DnaJ function at high temperature. A chimeric protein, consisting of the J domain of Mdj1p coupled to the rest of DnaJ, acted as a super-DnaJ protein, functioning even more efficiently than wild-type DnaJ. In contrast to the results with Mge1p and Mdj1p, both the expression and function of Ssc1p, the DnaK homolog, were severely compromised in E. coli. We were unable to demonstrate any functional complementation by Ssc1p, even when coexpressed with its Mdj1p cochaperone in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号