首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 46 毫秒
1.
某公司生产的42CrMo4钢风电空心主轴产品某一型号出现淬火开裂的比例较高,报废率近20%.用ARL8860直读光谱仪、MTS万能试验机、SANS冲击试验机、徕卡光学显微镜等对该产品进行一系列理化检验,并结合相关理论基础分析发现,将原淬火工艺优化为860℃加热后预冷至820℃浸水淬火,淬火水冷20 min,极大降低了产...  相似文献   

2.
机床导轨尺寸较长,有效厚度超过油淬临界直径,见图1。导轨热处理淬火后产生的畸变和开裂及硬度不均匀现象难以控制。长久以来,按常规的工艺淬火,一直没有很好地解决这个问题,严重影响了生产和产品质量。导轨材料为GCr15钢,其主要化学成分(质量分数,%)为:0.95~1.05C,0.20~0.40Mn,0.15~1.35Si,1.30~1.65Cr。该钢的组织均匀、淬透性好。  相似文献   

3.
热处理工艺对BT22钛合金组织和性能的影响   总被引:4,自引:4,他引:4  
研究了两级退火工艺参数对BT22钛合金显微组织和室温拉伸性能的影响。研究发现:热处理后的显微组织为α β的两相组织,晶粒形状较为规则,晶界上有连续和不连续的α相,晶内分布着点状、球状和短杆状的α相;BT22钛合金强度在830℃(T1)出现极大值,随着等温淬火温度(T2)的升高及时效温度(T3)的降低而增高,塑性的变化规律与强度相反;等温淬火的冷却方式(v2)对合金的性能影响不大,BT22合金具有低速冷却的淬火性能,淬透性能极好。  相似文献   

4.
通过对镶铸高速钢-碳钢双金属耐磨材料在不同工作温度下的组织性能变化的研究,探讨了镶铸高速钢-碳钢双金属耐磨镶块的回火稳定性。针对在不同工作温度下高速钢镶块碳化物形态变化的情况安排适当的热处理工艺,以达到改善高速钢镶块碳化物形态的目的。实验结果表明,随回火温度升高,网状碳化物聚集长大,增加耐磨件的脆性,在使用过程中,如有冲击载荷的作用,易产生裂纹。采用热处理工艺为870℃退火+1 270℃淬火+560℃回火,满足镶铸件在高温粘着磨损条件下使用。  相似文献   

5.
程里  程方 《金属热处理》2005,30(12):96-97
分析了大齿轮轴渗碳淬火后齿面产生较大畸变的原因,找出了适合预留收缩余量和等温淬火工艺.解决了大齿轮轴的热处理畸变。  相似文献   

6.
高军 《物理测试》2007,25(3):44-0
 采用扫描电镜、低倍检验、金相检验、力学试验和化学分析等方法,分析了人字齿轮轴发生劈裂的原因。结果表明,齿轮轴劈裂是由心部的氢逐渐聚集形成白点,以白点为断裂源向外对称扩展致断的;用不同条件测得的断面收缩率和延伸率评价了齿轮轴的氢脆效应;较多的砷、锡等残余元素增加了氢脆敏感性。  相似文献   

7.
通过加大杆部直径的锻造余量,合理控制漏盘与杆部的间隙,采用局部镦粗法兰后错移,再成形杆部的方法,成功解决了传统工艺锻造时,号印后因号印长度短使端部压凹的问题或为满足最小号印长度造成钢锭利用率低的问题。  相似文献   

8.
内啮合齿轮泵齿轮轴强度分析   总被引:1,自引:0,他引:1  
根据内啮合齿轮泵的齿轮副的啮合规律,结合内啮合齿轮泵的实际特点,对内啮合齿轮泵的齿轮轴进行强度校核.并将理论计算结果与有限元建模分析的结果进行比较.  相似文献   

9.
内啮合齿轮泵齿轮轴挠度分析   总被引:1,自引:1,他引:0  
根据内啮合齿轮泵结构设计和使用情况,指出齿轮轴径向变形是影响齿轮泵性能的主要因素.因此,在强度满足的条件下,模拟齿轮轴的实际受力状态建立试验系统,并与理论计算结果进行比较,验证了适合于内啮合齿轮泵的具有工程实用意义的齿轮轴挠度计算公式.  相似文献   

10.
马维 《铸造技术》2014,(10):2252-2254
采用渗碳与氮碳共渗两种方法对40CrNiMo齿轮轴用钢进行了表面热处理,并根据钢表面硬度与渗透深度的结果对热处理工艺进行了优化。结果表明,适宜的氮碳共渗工艺为(520560℃)×(4560℃)×(46 h)。  相似文献   

11.
通过对某大型天线传动箱轴齿轮材料的检测分析表明,发生断齿的主要原因是该轴齿轮在生产过程的热处理淬火工序中严重过烧,基体材料晶粒严重粗大脆化,齿根部位的冲击韧度只有标准值的42%.  相似文献   

12.
齿轮轴失效分析   总被引:3,自引:0,他引:3  
一齿轮轴使用约 8个月后部分齿面出现严重剥落、“网状裂纹”和塑性变形压痕 (见图 1)。该齿轮轴所用的材料为2 0CrMnMo钢 ,齿顶圆直径为175mm ,齿轮轴长 40 0mm ,模数为 9,共 16个齿 (图 1)。生产工序为 :锻造→ 92 0℃正火→机加工→ 92 0℃渗碳→机加工 (切碳 )→ 86 0℃油淬 (盐浴炉加热 )→ 170℃回火→机加工 ,经检查 ,热处理各工序操作均正常。1 检验结果及分析1 1 宏观检查  对失效的齿轴进行宏观检查 ,发现以下特点图 1 失效齿轮轴宏观形貌Fig 1 Macrographofthefailuregearsha…  相似文献   

13.
王长健 《表面技术》2016,45(6):192-197
目的 材质为17Cr2Ni2MoA的风电齿轮箱高速齿轮轴,同炉号共生产5件,在安装装配后进行试车试验时其中4件均发现有断齿现象,导致高速齿轮轴报废,同时导致整个风电齿轮箱的安装调试工作停滞.故对该高速齿轮轴断齿原因进行分析,以区分质量事故责任.方法 通过化学成分分析、齿面宏观外貌观察分析、宏观断口、宏观金相、微观金相、有效硬化层深度测试、扫描电镜试验分析等一系列的理化试验,对该高速齿轮轴断齿原因进行分析.结果 该高速齿轮轴材质正常,化学成分合格.齿轮轴齿部断口上有疲劳贝壳纹线,齿轮断口为疲劳断口,疲劳源在齿根.齿轮轴齿部表面渗碳热处理层组织正常,晶粒度级别为7级,合格;齿轮轴齿根、齿面、齿顶表面渗碳热处理层的有效硬化层深度均过深,不符合产品技术要求.齿轮轴断口微观形态呈疲劳辉纹,未见明显的冶金缺陷.结论 该高速齿轮轴断齿性质为快速疲劳断裂,其形成原因是齿根渗碳层深度过深所致.  相似文献   

14.
齿轮轴放置一段时间后发生开裂。通过宏微观观察、金相组织检查、硬度测试、能谱成分分析以及氢含量测定,对齿轮轴的开裂性质和原因进行分析。结果表明:齿轮轴开裂性质为氢致延迟脆性开裂;齿轮轴开裂与氢含量关系较小;齿轮轴内部存在较大的Al2O3?(CaO)X夹杂缺陷,导致较大的应力集中,这是齿轮轴发生氢致脆性开裂的主要原因。应严格控制齿轮轴原材料的质量,防止类似故障的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号