首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100mg/L, current density of 10mA/cm2, salt concentration of 3000mg/L, temperature of 30 degrees C, ozone flow rate of 20mL/min, and distance between electrodes of 3cm, over 96% of the color was removed after 10min. As a consequence, removal of total organic carbon (TOC) was over 80%.  相似文献   

2.
In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 Am(-2) enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm(-1) and 50 mg l(-1), respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.  相似文献   

3.
Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.  相似文献   

4.
Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H2O2, Fe2+ and Cu2+) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H2O2 in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.  相似文献   

5.
The present investigation revealed that all the reactive dyes were degraded in chlorine mediated electrochemical oxidation. Titanium based dimensionally stable anode (DSA) was used for in situ generation of chlorine in the dye solution. All classes of reactive dyes (100 mg/L) showed a complete color removal at a supporting electrolyte concentration of 1.5 g/L NaCl and 36.1 mA/cm(2) current density. The chemical oxygen demand (COD) and total organic carbon (TOC) removals were from 39.5 to 82.8% and from 11.3 to 44.7%, respectively, for different reactive dyes. It can be concluded in general that the triazine containing higher molecular weight diazo compounds takes more time for complete de-colorization than the mono azo or anthraquinone containing dye compounds. The degradation rate of mixed dye compounds was affected by reaction temperature, current density, NaCl concentration and initial dye concentration. However, the initial pH of the dye solution ranging from 4.3 to 9.4 did not show significant effect on de-colorization. A complete color removal with 73.5% COD and 32.8% TOC removals were obtained for mixed reactive dyes (200 mg/L) at the end of 120 min of electrolysis under the optimum operating conditions of 4 g/L NaCl concentration and 72.2 mA/cm(2) current density.  相似文献   

6.
In this study, the successful decolorization and mineralization of phthalocyanine dye (C.I. Direct Blue 199, DB 199) by an advanced oxidation process (AOP), UV/H2O2, were observed while the experimental variables such as hydrogen peroxide dosage, UV dosage, initial dye concentration and pH were evaluated. The operating conditions for 90% decolorization of C.I. DB 199 and 74% removal of total organic carbon (TOC) were obtained for initial dye concentration of 20 mgl(-1), hydrogen peroxide dosage of 116.32 mM, UV dosage of 560 W and pH of 8.9 in 30 min. The pseudo-first order rate constant is a linear function of reverse of initial dye concentration. They linearly increased by incrementing UV dosage, yet were non-linear enhancement by increasing the hydrogen peroxide concentration. A higher pseudo-first order rate constant about 0.15 min(-1) was observed while hydrogen peroxide concentration within 5.82-116.32 mM. Moreover, the decolorization of C.I. DB 199 was observed to be more difficult than that of an azo dye, C.I. Acid Black 1, under the same operating conditions.  相似文献   

7.
The decolorization of the levafix orange textile dye in aqueous solution by electrocoagulation using aluminum sacrificial anode has been investigated. The process performance is analyzed in terms of decolorization efficiency and the important cost-related parameters such as electrode and energy consumptions, as a function of initial pH, conductivity, current density, initial dye concentration and electrolysis time. The present study proves the effectiveness of electrochemical treatment for the textile dye solution. 95% decolorization efficiency may be obtained at suitable operating conditions such as; current density 100 A/m(2), operating time 12 min and initial pH 6.4. The corresponding electrode and energy consumptions during the electrolysis were found to be 1.8 kg Al/kg dye and 35 k Wh/kg dye.  相似文献   

8.
This study investigates the evaluation of specific electrical energy consumption (SEEC) and the influence of operating parameters on the color removal efficiency of a dye solution containing C.I. Acid Yellow 23 by electrocoagulation process. Firstly, the operational parameters including current density, initial dye concentration, initial pH and time of electrolysis were optimized. Then the effects of the conductivity, the interelectrode distance and the area of cross-section of the electrodes on specific electrical energy consumption (SEEC) were studied under the optimum conditions. Our results indicated that for a solution of 50mg/l C.I. Acid Yellow 23, almost 98% color and 69% chemical oxygen demand (COD) were removed, when the pH was about 6, the time of electrolysis was 5min and the current density was approximately 112.5A/m(2). In addition, the results of our study revealed that when the conductivity and area of cross-section of the electrodes increased and interelectrode distance decreased, the cell voltage and specific electrical energy consumption would be decreased.  相似文献   

9.
To increase the water solubility and cationic charges at pH 7, cationic moieties were introduced onto both the C(6)-OH and C(2)-NH(2) groups in the chitosan (CTS) matrix by graft modification. The chemical structure of the obtained copolymer was demonstrated by characterizations of FT-IR, (13)C NMR, WXRD, SEM. Its excellent decolorization properties as a novel flocculant were evaluated with the C.I. Reactive Orange 5 (RO 5) and C.I. Reactive Blue 19 (RB 19) solutions using a jar test method. Both the nature of the anionic dyes and the pH of the initial dye solutions had effects on the decolorization properties. Charge neutralization played a dominant role for the color removal at pH 4, while polymer bridging contributed mainly to the color removal at pH 7. For the given flocculant/dye solutions, added salt was not in favor of the flocculated decolorization. At 25 °C, the flocculant needed for the highest color removal at pH 4 was 60 wt% of the dye (RO 5 or RB 19), but that at pH 7 were 100 wt% of RB 19 and 120 wt% of RO 5, respectively.  相似文献   

10.
A new dye-decolorizing white-rot fungus was isolated and identified as Trametes trogii based on its ITS-5.8S rRNA gene sequence analysis and morphological characteristics. Laccase was the only lignolytic enzyme produced by this strain during solid substrate fermentation (SSF) in soybean cake, a solid agro-industrial residue used for the first time in enzyme production. The extracellular crude enzyme from T. trogii in solid substrate fermentation showed good activity in synthetic dye color removal, decolorizing 85.2% Remazol Brilliant Blue R (50 mg l(-1)), 69.6% Reactive Blue 4 (35 mg l(-1)), and 45.6% Acid Blue 129 (83.3 mg l(-1)) without the addition of redox mediators, 90.2% Acid Red 1 (10 mg l(-1)), and 65.4% Reactive Black 5 (18.3 mg l(-1)) with the addition of 1mM 1-hydroxybenzotriazole in 30 min. Native polyacrylamide gel electrophoresis (Native-PAGE) of the crude enzyme and effects of laccase inhibitors on decolorization corroborated the laccase as the major enzyme involved in the decolorization of dyes. The comparison of color removal by the crude culture filtrates and by the whole fungal culture on the solid substrate revealed the former was more advantageous.  相似文献   

11.
Degradation of Reactive Black 5 (RB5), a well-known non-biodegradable disazo dye, has been studied using UV/TiO2, wet-air oxidation (WAO), electro-Fenton (EF) and UV/electro-Fenton (UV/EF) advanced oxidation processes (AOPs). The efficiency of substrate decolorization and mineralization in each process has been comparatively discussed by decreases in concentration and total organic carbon content of RB5 solutions. The most efficient method on decolorization and mineralization was observed to be WAO process. Mineralization efficiency was observed in the order of WAO>UV/TiO2>UV/EF>EF. Final solutions of AOPs applications after 90 min treatment can be disposed safely to environment. Photocatalytic degradation kinetics of RB5 successfully fitted to Langmuir-Hinshelwood (L-H) kinetics model. The values of second order degradation rate constant (k') and adsorption constant (K) were determined as 5.085 mg L(-1)min(-1) and 0.112 L mg(-1), respectively.  相似文献   

12.
Biosorption of Reactive Black 5 (RB 5) dye onto dried Penicillium restrictum biomass was studied with respect to pH, contact time, biosorbent and dye concentrations. The effect of temperature on the biosorption efficiency was also carried out and the kinetic parameters were determined. Optimum initial pH, equilibrium time and biomass concentration for RB 5 dye were found to be 1.0, 75 min and 0.4 g dm(-3) at 20 degrees C, respectively. The maximum biosorption capacities (q(max)) of RB 5 dye onto dried P. restrictum biomass were 98.33 and 112.50mg (g biomass)(-1) at 175 mg dm(-3) initial dye concentration at 20 and 50 degrees C, respectively, and it was 142.04 mg (g biomass)(-1) at 200 mg dm(-3) initial dye concentration at 35 degrees C. The results indicate that the biosorption process obeys a pseudo-second-order kinetic model.  相似文献   

13.
The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.  相似文献   

14.
In this work, the treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process has been studied. Decolorization was almost complete after 120min with an ozone concentration of 34.08mg/L, the biological oxygen demand for 5 days (BOD5)/chemical oxygen demand (COD) ratio increased from 0.102 to 0.406, which was more effective for the subsequent upflow biological aerated filter (UBAF) to reduce COD concentration. Under the conditions of gas/liquid=3, hydraulic load=4.8m3/m3.d, T=20-25 degrees C, the mass ratio of ozone to dye=4.5, pH 11, the COD and color of the effluent were less than 40mg/L and 20 Pt-Co units, respectively, and the average decolorization and COD removal efficiency were 97% and 90%, respectively. The experimental results showed that the combination of ozone oxidation and upflow biological aerated filter was a promising technique to treat wastewater containing azo dye.  相似文献   

15.
In this paper, Taguchi method was applied to determine the optimum dye removal from aqueous solution by electrocoagulation using aluminum electrodes. An orthogonal array (OA(16)) experimental design that allows to investigate the simultaneous variations of five parameters (initial dye concentration, initial pH of the solution, supporting electrolyte concentration, supporting electrolyte type and current density) having four levels was employed to evaluate the effects of experimental parameters. Performance measure analysis was followed by performing a variance analysis, in order to determine the optimum levels and relative magnitude of the effect of parameters. Because the desired characteristic for response has been maximum decolorization, Taguchi's 'the larger the better' performance formula was used. While the optimum conditions were found to be initial dye concentration of 100 mg/L, initial pH of the solution of 3, supporting electrolyte concentration of 0.0 mM, supporting electrolyte type of CaCl(2) and current density of 0.50 mA/cm(2). Under these optimum conditions, energy consumption is 0.607 kWh/kg dye, when the system evaluated also based on the energy consumptions it can be said that optimum conditions should be modified as follows: supporting electrolyte concentration of 2.5 mM; supporting electrolyte type NaCl, for 100 mg/L initial dye concentration; initial pH of the solution of 3; current density of 0.50 mA/cm(2).  相似文献   

16.
The decolorization of an azo dye, C.I. Reactive Red 2 was investigated using TiO(2) photocatalysis coupled with water jet cavitation. Experiments were performed in a 4.0 L solution under ultraviolet power of 9 W. The effects of TiO(2) loading, initial dye concentration, solution pH, geometry of cavitation tube, and the addition of anions on the degradation of the dye were evaluated. Degradation of the dye followed a pseudo-first order reaction. The photocatalysis coupled with water jet cavitation elevated degradation of the dye by about 136%, showing a synergistic effect compared to the individual photocatalysis and water jet cavitation. The enhancement of photocatalysis by water jet cavitation could be due to the deagglomeration of catalyst particles as well as the better contact between the catalyst surfaces and the reactants. Venturi tube with smaller diameter and shorter length of throat tube favored the dye decolorization. The degradation efficiency was found to increase with decreasing initial concentration and pH. The presence of NO(3)(-) and SO(4)(2-) enhanced the degradation of RR2, while Cl(-), and especially HCO(3)(-) significantly reduced dye decolorization. The results of this study indicated that the coupled photocatalysis and water jet cavitation is effective in degrading dye in wastewater and provides a promising alternative for treatment of dye wastewater at a large scale.  相似文献   

17.
The decolorization and mineralization of cotton dyeing effluent containing C.I. Acid Black 22 as well as synthesized C.I. Acid Black 22 wastewater by means of advanced oxidation processes (AOPs), such as UV/H2O2, O3 and pre-ozonation coupled with UV/H2O2 processes, were evaluated in this study. It was observed that the UV/H2O2 process took longer retention time than ozonation for color removal of dye bath effluent. Reversely, the total organic carbon (TOC) removal showed different phenomena that ozonation and UV/H2O2 process obtained 33 and 90% of removal efficiency for 160 min of retention time, respectively. Additionally, laboratory synthesized dye wastewater was substantially more efficient in the decolorization process than dye bath effluent. Therefore, in this work, pre-ozonation coupled with UV/H2O2 process was employed to enhance the reduction of both color and TOC in dye bath effluent at the same time. At the same time, the retention time demand was reduced to less than 115 min for 90% removal of TOC and color by this combined process.  相似文献   

18.
The removal of COD and oil-grease from dairy wastewater was experimentally investigated using direct current (DC) electrocoagulation (EC). In the EC of dairy wastewater, the effects of initial pH, electrolysis time, initial concentration of COD, conductivity and current density were examined. The COD and oil-grease in the aqueous phase were effectively removed when iron was used as sacrificial anode. The optimum operating range for each operating variable was experimentally determined. The batch experimental results revealed that COD and oil-grease in aqueous phase was effectively removed. The overall COD and oil-grease removal efficiencies reached 98 and 99%, respectively. The optimum current density, pH and electrolysis time for 18,300 mg COD/L and 4570 mg oil-grease/L were 0.6 mA/cm2, 7 and 1 min, respectively. Mean energy consumption was 0.003 kWh/kg of COD.  相似文献   

19.
The paper presents the study of electrocoagulation (EC) of aqueous dye solutions of two different industrial dyes in a batch stirred cell. Experiments were carried out with 200 mg/l individual concentration of methylene blue (MB) and eosin yellowish (EY) in presence of NaCl as electrolyte. Effect of operating time and current density on the decolorization of dye solutions, reduction of chemical oxygen demand (COD) and variation in conductivity, pH during treatment has been studied. Small difference between color diminution and COD reduction has been found with the progress of treatment. First-order rate equation for dye removal has been developed from the experimental results. Sludge formation during EC and problems associated with this solid waste generation and disposal has been assessed. Energy consumption in KWh/m(3) with reduction of COD (kg) during treatment has been reported. Electric power consumption of 1.5 KWh reduces 0.21 and 0.11 kg COD from 0.24 and 0.14 kg of initial COD for MB and EY, respectively, starting from 200 mg/l dye concentration.  相似文献   

20.
This study makes a comparison between UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton>EC>UV/Nano-TiO(2)>Fenton-like>EF. Desired concentrations of Fe(2+) and H(2)O(2) for the abatement of AB9 in the Fenton-based processes were found to be 10(-4)M and 2 x 10(-3) M, respectively. In the case of UV/Nano-TiO(2) process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO(2) nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO(2) nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m(2) in electrocoagulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号