首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylcholine plays an important role in cortical arousal. Adenosine is released during increased metabolism and has been suggested to be a sleep-promoting factor. To understand the interaction of acetylcholine and adenosine in regulating cortical excitability, we examined the effect of carbachol on NMDA-evoked adenosine release and identified the muscarinic receptor subtype that mediated this effect in adult rat cortical slices in vitro. Carbachol (to 300 microM) alone did not affect the basal release of adenosine. However, carbachol (100 microM) induced a 253% increase in NMDA (20 microM)-evoked adenosine release in the presence of Mg2+. In the absence of Mg2+, carbachol's potentiating effect was less (60% increase). The nonselective muscarinic antagonist atropine (1.5 microM) blocked the facilitatory effect of carbachol on NMDA-evoked adenosine release, and this was mimicked by the M3-selective antagonist 4-diphenylacetoxy-N-methylpiperidine (1 microM). Neither an M1-selective dose of pirenzepine (50 nM) nor the M2-selective antagonist methoctramine (1 microM) affected carbachol's action on NMDA-evoked adenosine release. Carbachol had no effect on adenosine release evoked by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). These results suggest that acetylcholine does not affect basal adenosine release but enhances NMDA receptor-mediated evoked adenosine release by acting at M3 receptors in the cortex. This interaction may have a role in regulating cortical neuronal excitability on a long-term basis.  相似文献   

2.
1. Intracellular recordings were made from slices of guinea pig spinal trigeminal nucleus pars caudalis (SG). 2. Muscarine [0.3-30 microM; half maximally effective concentration (EC50) = 2.9 microM] hyperpolarized 61% of SG neurons. The effect was mimicked by carbachol (0.3-30 microM; EC50 = 3.9 microM) and antagonized by pirenzepine (1 microM). Thirty-four percent of the neurons were depolarized by muscarine and carbachol (1-30 microM: EC50 = 5.7 microM), and the effect was antagonized by pirenzepine (100 nM). 3. In approximately 80% of recordings, muscarine (10-30 microM) evoked repetitive spontaneous inhibitory postsynaptic potentials (IPSPs) that were sensitive to bicuculline (10 microM). 4. Muscarine (1-30 microM; EC50 = 3 microM) decreased the amplitude of the majority of evoked excitatory postsynaptic potentials (EPSPs), and the effect was mimicked by carbachol and antagonized by pirenzepine (100 nM). 5. These results indicate that there are at least three mechanisms by which muscarine inhibits SG neurons: 1) hyperpolarization through activation of non-M1 receptors; 2) activation of gamma-amino-butyric acid-containing interneurons that mediate IPSPs in a subset of neurons; and 3) a decrease in evoked EPSP amplitude. Muscarine can also activate SG neurons via interaction with an M1-type receptor.  相似文献   

3.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 microM) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

4.
Cortical glutamatergic fibres and cholinergic inputs arising from large aspiny interneurons converge on striatal spiny neurons and play a major role in the control of motor activity. We have investigated the interaction between excitatory amino acids and acetylcholine (ACh) on striatal spiny neurons by utilizing intracellular recordings, both in current- and in voltage-clamp mode in rat brain slices. Muscarine (0.3-10 microM) produced a reversible and dose-dependent increase in the membrane depolarizations/inward currents induced by brief applications of N-methyl-D-aspartate (NMDA), while it did not affect the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-induced responses. These concentrations of muscarine did not alter the membrane potential and the current-voltage relationship of the recorded cells. Neostigmine (0.3-10 microM), an ACh-esterase inhibitor, mimicked this facilitatory effect. The facilitatory effects of muscarine and neostigmine were antagonized either by scopolamine (3 microM) or by pirenzepine (10-100 nM), an antagonist of M1-like muscarinic receptors, but not by methoctramine (300 nM), an antagonist of M2-like muscarinic receptor. Accordingly, these facilitatory effects were mimicked by McN-A-343 (1-10 microM), an agonist of M1-like muscarinic receptors, but not by oxotremorine (300 nM), an agonist of M2-like receptors. Tetrodotoxin (TTX) did not block the facilitatory effect produced by the activation of muscarinic receptors suggesting that this effect is postsynaptically mediated. The action of neostigmine was prevented either by the intracellular calcium (Ca2+) chelator BAPTA (200 mM) or by preincubating the slices with inhibitors of protein kinase C (PKC) (staurosporine 100 nM or calphostin C 1 microM). McN-A-343 did not alter the excitatory post synaptic potentials (EPSPs) evoked by corticostriatal stimulation in the presence of physiological concentration of magnesium (Mg2+ 1.2 mM), while it enhanced the duration of these EPSPs recorded in the absence of external magnesium. Our data show that endogenous striatal ACh exerts a positive modulatory action on NMDA responses via M1-like muscarinic receptors and PKC activation.  相似文献   

5.
1. Focal cortical epilepsy was investigated by applying tetanic stimulation repeatedly (100 Hz. 2 s in duration, once every 10 min, 10 episodes) to layer III association fibers in rat piriform cortex slices and recording both extracellular and intracellular responses from the endopiriform nucleus. To promote excitability, piriform slices were incubated in artificial cerebrospinal fluid (ACSF) containing 0.9 mM Mg2+ and 5 mM K+, at an initial temperature of 10-12 degrees C, which was allowed to warm passively to room temperature. 2. Responses recorded extracellularly in the endopiriform nucleus consisted of two types: weak stimulation evoked an early-occurring, small-amplitude, negatively deflecting potential; strong stimulation evoked a more complex response comprising both an early potential of maximal amplitude and a later-occurring epileptiform potential of greater amplitude and longer duration. Late-occurring epileptiform potentials were not observed in slices incubated in ACSF at room temperature. 3. Both the early potential and the late-occurring epileptiform responses were abolished by the non-N-methyl-D-aspartic acid (non-NMDA) subtype of glutamate receptor blocker, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM). Application of D(-)-2-amino-5-phosphonopentanoic acid (APV; 50 microM) to block NMDA receptors was without effect on the early potential but diminished the late-occurring epileptiform potential. The late-occurring potential was unable to follow stimulation delivered at a frequency of 1 Hz. These results suggest that the early potential was generated monosynaptically and dependent solely on the activation of non-NMDA receptors, whereas the late-occurring epileptiform potential was polysynaptic in origin and possessed both a CNQX- and an APV-sensitive component. 4. Responses increased progressively in both amplitude and duration after tetanic stimulation. The threshold intensity required to evoke the complex dual-component potential was reduced by tetanic stimulation. An increase in multiunit spiking activity, indicating an increase in synchronous discharges, was also observed. A residual potential could be evoked in the presence of CNQX (10 microM) after the tetanic stimulation procedure. 5. Spontaneous discharges occurred as early as after the first episode of tetanic stimulation and persisted for the duration of the experiment. Spontaneous discharges were abolished by either CNQX or by a fourfold increase in extracellular Mg2+ concentration, the latter reversibly. APV reduced the frequency of spontaneous discharges by 38.6 +/- 9.3% (mean +/- SE). The conventional anticonvulsant drug 5,5-diphenylhydantoin, the benzodiazepine receptor agonist midazolam, and the benzodiazepine receptor antagonist flumazenil were without effect on the frequency of spontaneous discharges. Evoked responses were also unaffected by either 5,5-diphenylhydantoin or midazolam. Slices not exposed to cold ACSF, although demonstrating potentiation of evoked responses after tetanization did not produce spontaneous epileptiform discharges. 6. Intracellular recordings from endopiriform neurons revealed the cellular correlates of the extracellular responses. Weak stimulation evoked a small-amplitude depolarizing potential. Increasing the intensity of stimulation increased the amplitude of this response and also evoked a second depolarizing potential of greater amplitude occurring at variable latencies. Maximal stimulation evoked an action potential. After tetanic stimuli, responses resembling a paroxysmal depolarizing shift consisting of a depolarizing potential with superimposed multiple action potentials were evoked reliably. Passive membrane properties after repeated tetanic stimulation were not different when compared with control. 7. This novel model of in vitro focal cortical epilepsy has many features characteristic of conventional kindling including 1) progressive nature; 2) reduced threshold to evoke discharges; and 3) persist  相似文献   

6.
Presynaptic modulation of [3H]GABA release was examined using rat cerebral cortical slices. In vitro addition of carbachol, a muscarinic receptor agonist, resulted in a significant suppression of the release of [3H]GABA evoked by high potassium (50 mM) stimulation in a dose dependent manner, while noradrenaline, isoproterenol, dopamine, 5-hydroxytryptamine, histamine and glutamic acid had no significant effect on the evoked release of [3H]GABA. This suppressive effect of carbachol was antagonized invariably by atropine. Furthermore, it was found that the suppressive action of carbachol could be antagonized by pirenzepine, a selective M1 muscarinic receptor antagonist, but not by AF-DX 116 and 4-DAMP, M2 and M3 receptor antagonists, respectively. These results suggest that the release of GABA from cerebral cortical GABA neurons may be modulated by presynaptic M1 muscarinic receptor.  相似文献   

7.
The spontaneous, synchronous activity induced by 4-aminopyridine (4AP, 50 microM) in the adult rat entorhinal cortex was analyzed with simultaneous field potential and intracellular recordings in an in vitro slice preparation. Four-AP induced isolated negative-going field potentials (interval of occurrence = 27.6 +/- 9.9 (SD) s; n = 27 slices) that corresponded to intracellular long-lasting depolarizations (LLDs), and ictallike epileptiform discharges (interval of occurrence = 10.4 +/- 5.7 min; n = 27 slices) that were initiated by the negative field potentials. LLDs recorded with K-acetate-filled microelectrodes triggered few action potentials of variable amplitude and had a duration of 1.7 +/- 0.8 s (n = 26 neurons), a peak amplitude of 11.8 +/- 5.0 mV (n = 26 neurons) and a reversal potential of -66.2 +/- 3.9 mV (n = 17 neurons). The ictal discharges studied with K-acetate microelectrodes consisted of prolonged depolarizations (duration = 72.9 +/- 44.3 s; peak amplitude = 29.2 +/- 11.4 mV; n = 25 neurons) with action-potential firing during both the tonic and the clonic phase. These depolarizations had a reversal potential of -45.3 +/- 3.8 mV (n = 4 neurons). Intracellular Cl- diffusion from KCl-filled microelectrodes made both LLDs and ictal depolarizations increase in amplitude (30.5 +/- 8.2 mV, n = 8 and 41.8 +/- 9.8 mV, n = 6 neurons, respectively). LLDs recorded with KCl and 2-(trimethyl-amino)N-(2, 6-dimethylphenyl)-acetamide (QX-314) microelectrodesreached an amplitude of 36.3 +/- 5.2 mV, lasted 12.5 +/- 6.5 s, and had a reversal potential of -31.3 +/- 2.5 mV (n = 4 neurons); under these recording procedures the ictal discharge amplitude was 41.5 +/- 5.0 mV and the reversal potential -24.0 +/- 7.0 mV (n = 4 neurons). The N-methyl-D-aspartate (NMDA) receptor antagonist 3,3-(2-carboxy-piperazine-4-yl)-pro-pyl-l-phosphonate (10 microM, n = 5 neurons) alone or concomitant with the nonNMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM, n = 4 neurons) abolished ictal discharges, without influencing LLDs. LLDs were blocked by the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI, 10 microM, n = 6 neurons) or the mu-opioid receptor agonist (-Ala2-N-Me-Phe, Gly-ol) enkephalin (DAGO, 10 microM, n = 2 neurons). Application of BMI (n = 4 neurons) or DAGO (n = 2 neurons) to control the medium abolished LLDs and ictal discharges but disclosed a novel type of epileptiform depolarization that lasted 3.5 +/- 1.2 s and occurred every 5.2 +/- 2.6 s (n = 6 neurons). Our data indicate that 4AP induces in the rat entorhinal cortex a synchronous, GABA-mediated potential that is instrumental in initiating NMDA-dependent, ictal discharges. Moreover we present evidence for an active role played by GABAA-mediated potentials in the maintenance and termination of these prolonged epileptiform events.  相似文献   

8.
Intracellular recordings from CA3 pyramidal cells of rat hippocampus in a slice preparation revealed the occurrence of interictal epileptiform discharges and synchronous GABA-mediated potentials during application of 4-aminopyridine (4AP, 50 micrometer). The synchronous GABA-mediated potential consisted of a sequence of early hyperpolarization, long-lasting depolarization (LLD), and late hyperpolarization. Action potentials of variable amplitude occurred at the peak of the early hyperpolarization and during the LLD rising phase (48 of 64 cells); they were not prevented by membrane hyperpolarization and displayed inflections that were reminiscent of the initial segment-somatodendritic (IS-SD) fractionation. Interictal discharges were blocked by excitatory amino acid receptor antagonists, while both GABA-mediated potentials and action potentials of variable amplitude continued to occur (n = 10). The latter events were still recorded in the presence of the GABAB receptor antagonist CGP-35348 (0.5-1 mm, n = 4), but were abolished by the GABAA receptor antagonist bicuculline methiodide (BMI, 10 micrometer, n = 5). Localized application of BMI (20 micrometer, n = 6) or tetrodotoxin (TTX, 5 micrometer, n = 3) to the CA1 stratum radiatum blocked the variable amplitude action potentials; these effects were not seen when BMI (n = 4) or TTX (n = 4) were applied to the CA3 stratum radiatum, although both procedures made LLDs disappear. Our findings indicate that action potentials of variable amplitude recorded from CA3 pyramidal cells in the 4AP model are generated at or near the terminal region of the Schaffer collaterals and that they represent TTX-sensitive ectopic events. These action potentials are generated at this site by a BMI-sensitive (and thus GABAA-mediated) mechanism. We propose that the ectopic action potentials reflect an increased excitability of axon terminals that is presumably caused by [K+]o elevations associated with the 4AP-induced synchronous GABA-mediated potential.  相似文献   

9.
1. The effects of muscarinic antagonists on cationic current evoked by activating muscarinic receptors with the stable agonist carbachol were studied by use of patch-clamp recording techniques in guinea-pig single ileal smooth muscle cells. 2. Ascending concentrations of carbachol (3-300 microM) activated the cationic conductance in a concentration-dependent manner with conductance at a maximally effective carbachol concentration (Gmax) of 27.4+/-1.4 nS and a mean -log EC50 of 5.12+/-0.03 (mean+/-s.e.mean) (n=114). 3. Muscarinic antagonists with higher affinity for the M2 receptor, methoctramine, himbacine and tripitramine, produced a parallel shift of the carbachol concentration-effect curve to the right in a concentration-dependent manner with pA2 values of 8.1, 8.0 and 9.1, respectively. 4. All M3 selective muscarinic antagonists tested, 4-DAMP, p-F-HHSiD and zamifenacin, reduced the maximal response in a concentration-dependent and non-competitive manner. This effect could be observed even at concentrations which did not produce any increase in the EC50 for carbachol. At higher concentrations M3 antagonists shifted the agonist curve to the right, increasing the EC50, and depressed the maximum conductance response. Atropine, a non-selective antagonist, produced both reduction in Gmax (M3 effect) and significant increase in the EC50 (M2 effect) in the same concentration range. 5. The depression of the conductance by 4-DAMP, zamifenacin and atropine could not be explained by channel block as cationic current evoked by adding GTPgammaS to the pipette (without application of carbachol) was unaffected. 6. The results support the hypothesis that carbachol activates M2 muscarinic receptors so initiating the opening of cationic channels which cause depolarization; this effect is potentiated by an unknown mechanism when carbachol activates M3 receptors. As an increasing fraction of M3 receptors are blocked by an antagonist, the effects on cationic current of an increasing proportion of activated M2 receptors are disabled.  相似文献   

10.
Intra- and extracellular recordings were made in the transverse hippocampal slice in vitro to study the requirements for the triggering of epileptiform discharges of CA1 cells. Spontaneous and induced epileptiform discharges were produced by adding small amounts of sodium benzyl penicillin. Recorded intracellularly, the epileptiform activity consisted of a burst of action potentials superimposed on a depolarizing wave. Extracellular recordings demonstrated a marked synchronization. The epileptiform activity of the CA1 cells appeared without changes in the passive membrane properties or in the spike generating mechanism. Spontaneous epileptiform discharges of the CA2 cells depended upon a synaptic activation from the CA3 region. Stimulation of afferent fibres evoked an early and a late burst response in the CA2 cells. The long latency burst was caused by a re-excitation from the CA3 region. The early burst response seems to be an intrinsic property of the CA1 cells and may be induced by synaptic activation of either apical or basal dendrites. The findings suggest that synaptic depolarization is necessary for the generation of epileptiform discharges of the CA1 cells.  相似文献   

11.
The effect of muscarinic receptor activation on phosphoinositide hydrolysis in the rat olfactory bulb was investigated by determining either the inositol (1,4,5) trisphosphate (Ins(1,4,5)P3) mass or the accumulation of [3H]inositol phosphates ([3H]InsPs). In miniprisms of rat olfactory bulb, carbachol produced an atropine-sensitive increase in Ins(1,4,5)P3 concentration. In a membrane preparation, the formation of Ins(1,4,5)P3 was stimulated by guanosine-5'-(3-O-thio) triphosphate (GTP gamma S), but not by carbachol. However, carbachol potentiated the GTP gamma S stimulation when the two agents were combined. In miniprisms prelabelled with [3H]myo-inositol, carbachol increased the accumulation of [3H]InsPs and this effect was significantly reduced by tissue treatment with either 1 microM phorbol 12-myristate 13-acetate or 1 mM dibutyryl cyclic AMP. Analysis of concentration-response curves indicated that carbachol (EC50 = 96 microM) and oxotremorine-M (EC50 = 8.2 microM) behaved like full agonists, whereas oxotremorine, BM5, arecoline and bethanechol were partial agonists. The carbachol stimulation of [3H]InsPs accumulation was counteracted with high affinity by the M1 antagonist pirenzepine (pA2 = 8.26), and less potently by the M3 antagonist para-fluorohexahydro-sila-difenidol (pA2 = 6.7) and the M2 antagonist AF-DX 116 (pA2 = 6.12). The biochemical and pharmacological properties of the muscarinic stimulation of phosphoinositide hydrolysis were compared with those displayed by the muscarinic stimulation of adenylate cyclase in the rat olfactory bulb.  相似文献   

12.
We review our works on the pharmacological modulation of long-term potentiation (LTP) at guinea pig hippocampal mossy fiber-CA3 synapses in vitro. The magnitude of tetanus-induced LTP at the mossy fiber synapse was augmented by perfusion of slices with several cognitive enhancers, such as bifemelane (1 microM). The mossy fiber LTP was enhanced by somatostatin (0.32 microM) and inhibited in somatostatin-depleted slices from cysteamine-treated guinea pigs. An involvement of the 5-HT3 receptor also showed that granisetron (0.1 microM) enhanced the mossy fiber LTP. The above-mentioned enhancements by perfused agents were commonly reversed, at least in part, by muscarinic antagonists. However, the magnitude of mossy fiber LTP was bidirectionally modulated by muscarinic stimulations of slices with physostigmine or carbachol at different concentrations. The enhancing effects of high-concentration carbachol was antagonized by pirenzepine, and in contrast, the inhibition by low-concentration carbachol was antagonized in the presence of AF-DX116. When guinea pigs were preinjected with the cholinotoxin AF64A, the magnitude of LTP was decreased in the slices prepared from AF64A-treated animals. These results suggest that endogenous acetylcholine dominantly plays facilitatory roles through muscarinic M1 receptors in the induction of mossy fiber LTP. The pharmacological characterization of mossy fiber LTP may be of help to the evaluation of cognitive enhancers at a neuronal circuit level.  相似文献   

13.
Alpha, omega-adenine dinucleotides (Ap(n)A) consist of two adenosine molecules linked at the 5' position by phosphate groups, the number of which is denoted by n and can range from 2 to 6. The aim of this study was to investigate the effect of Ap4A and Ap5A on the rate of epileptiform activity. Hippocampal slices (450 microm), when perfused with a medium containing no added magnesium and 4-aminopyridine (50 microM), generate epileptiform activity of an interictal nature. Ap4A and Ap5A at 1 microM depressed the discharge rate to a significant extent. At this concentration adenosine (1 microM) did not produce any effect. However at 10 microM adenosine, Ap4A and Ap5A all decreased the burst frequency. Adenosine deaminase (0.2 U/ml) totally annulled the inhibition of epileptiform activity produced by 10 microM adenosine or 1 microM Ap4A and Ap5A. Adenosine deaminase did not significantly change the maximum depression of activity produced by 10 microM Ap4A and Ap5A. 8-cyclopentyl-1,3-dimethylxanthine, an A1, receptor antagonist, increased the basal rate of epileptiform activity and prevented the depression of burst discharges by Ap4A. 5'-adenylic acid deaminase converts AMP into IMP which is inactive. 5'-adenylic acid deaminase did not prevent the inhibitory effects of Ap4A. The results suggests that in the CA3 region of the hippocampus, Ap4A and Ap5A act partly by stimulating xanthine-sensitive receptors directly and partly through the formation of the metabolite, adenosine.  相似文献   

14.
The effects of midazolam, one of the most popular benzodiazepines, on synaptic transmissions were compared with intracellular recordings between CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices. First, we studied the effects of midazolam on orthodromically evoked spikes, membrane properties and synaptic potentials. Secondly, the effects of a GABA(A) receptor agonist, muscimol, were examined on membrane properties to determine whether or not the densities of GABA(A) receptors are different between CA1-PCs and DG-GCs. Midazolam (75 microM) markedly depressed orthodromically evoked spikes in CA1-PCs, compared with those in DG-GCs. A GABA(A) receptor antagonist, bicuculline (10 microM), almost completely antagonized the depressant effects of midazolam on spike generation in CA1-PCs, whereas it had little effect on midazolam in dentate gyrus granule cells. Midazolam produced either depolarizing or hyperpolarizing effects on resting membrane potentials (Vm) with an input resistance decrease in CA1-PCs, whereas it produced depolarized Vm in DG-GCs. Midazolam significantly increased the amplitude of monosynaptic inhibitory postsynaptic potentials in CA1-PCs, whereas midazolam slightly decreased these in DG-GCs. Midazolam significantly decreased the amplitude of excitatory postsynaptic potentials both in CA1-PCs and DG-GCs. Muscimol (100 microM) produced either depolarizing or hyperpolarizing effects on Vm with an input resistance decrease in CA1-PCs, and it depolarized Vm with an input resistance decrease in DG-GCs. These results demonstrate that midazolam has differential effects on excitatory and inhibitory synaptic transmissions in hippocampal neurons. The mechanism of this difference could be partly due to the different types of GABA(A) receptors between CA1-PCs and DG-GCs.  相似文献   

15.
In mammals, the suprachiasmatic nucleus (SCN) is responsible for the generation of most circadian rhythms and for their entrainment to environmental cues. Carbachol, an agonist of acetylcholine (ACh), has been shown to shift the phase of circadian rhythms in rodents when injected intracerebroventricularly. However, the site and receptor type mediating this action have been unknown. In the present experiments, we used the hypothalamic brain-slice technique to study the regulation of the SCN circadian rhythm of neuronal firing rate by cholinergic agonists and to identify the receptor subtypes involved. We found that the phase of the oscillation in SCN neuronal activity was reset by a 5 min treatment with a carbachol microdrop (1 microliter, 100 microM), but only when applied during the subjective night, with the largest phase shift (+ 6 hr) elicited during the middle of the subjective night. This effect also was produced by ACh and two muscarinic receptor (mAChR) agonists, muscarine and McN-A-343 (M1-selective), but not by nicotine. Furthermore, the effect of carbachol was blocked by the mAChR antagonist atropine (0.1 microM), not by two nicotinic antagonists, dihydro-beta-erythroidine (10 microM) and d-tubocurarine (10 microM). The M1-selective mAChR antagonist pirenzepine completely blocked the carbachol effect at 1 microM, whereas an M3-selective antagonist, 4,2-(4,4'-diacetoxydiphenylmethyl)pyridine, partially blocked the effect at the same concentration. These results demonstrate that carbachol acts directly on the SCN to reset the phase of its firing rhythm during the subjective night via an M1-like mAChR.  相似文献   

16.
Muscarinic receptors expressed by rat oligodendrocyte primary cultures were examined by measuring changes in second messengers following exposure to carbachol, an acetylcholine analog, and by polymerase chain reaction. Inositol phosphate levels were measured in [3H]myo-inositol-labelled young oligodendrocyte cultures following stimulation with carbachol. Atropine, a specific muscarinic antagonist, prevented the carbachol-induced accumulation of inositol phosphates. The formation of inositol trisphosphate was concentration- and time-dependent, with the peak at 100 microM carbachol and 10 min. Carbachol increased intracellular calcium levels, which were dependent both on the mobilization of intracellular stores and influx of extracellular calcium. In initial experiments with more selective antagonists, the mobilization of intracellular calcium was preferentially inhibited by pirenzepine, a selective M1 antagonist, but not methoctramine, a selective M2 antagonist, suggesting M1 muscarinic receptor involvement. A role for protein kinase C in the regulation of carbachol-stimulated inositol phosphate formation and intracellular calcium mobilization was demonstrated, as acute pretreatment with phorbol-12,13-myristate acetate abolished the formation of both second messengers. Pretreatment with 100 microM carbachol abolished the 40% increase in the cyclic AMP accumulation stimulated by isoproterenol, a specific beta-adrenergic agonist. In turn, the inhibition was alleviated by pretreatment with atropine, suggesting muscarinic receptor involvement. Polymerase chain reaction carried out with specific m1 and m2 muscarinic receptor oligonucleotide primers, confirmed that these cells express, at least, the two muscarinic receptor subtypes. Without excluding the expression of other subtypes, these results suggest that developing oligodendrocytes express m1 (M1) and m2 (M2) muscarinic receptors capable of mediating phosphoinositide hydrolysis, mobilization of intracellular calcium and the attenuation of beta-adrenergic stimulation of cyclic AMP formation.  相似文献   

17.
The effect of acetylcholine on the neurointermediate lobe beta-endorphin secretion was studied in the neonatal and in the adult rat in vitro. Acetylcholine stimulated beta-endorphin secretion from the 2-day- and 5-day-old neurointermediate lobe, the effect was dose dependent and more pronounced in the presence of the cholinesterase inhibitor eserine. The 10-day-, the 21-day-old and the adult rat neurointermediate lobes did not respond to acetylcholine, even in the presence of eserine. Basal beta-endorphin secretion was elevated by the D2 receptor antagonist sulpiride, but acetylcholine was without effect in the 10-day-old and in the adult neurointermediate lobe even after dopamine receptor blockade. The beta-endorphin stimulatory response to acetylcholine was diminished by the M1 muscarinic receptor antagonist pirenzepine and blocked by the M3 > M1 antagonist 4-diamino-phenyl-piperidine (4-DAMP). The selective M2 antagonist methoctramine and nicotine had no effect. These data indicate that the neurointermediate lobe beta-endorphin secretion is under special muscarinic cholinergic regulation for a relatively short time after birth. The disappearance of this stimulatory cholinergic effect in later life might be due to changes in the intracellular secretory machinery in the IL and/or to the uncoupling of the cholinergic receptors from the intracellular signal transduction system(s) responsible for the stimulated secretion in the rat melanotrope cells.  相似文献   

18.
The effects of both activation and blockade of dopamine (DA) D1 receptors on long-term depression (LTD) of synaptic transmission were examined in CA1 neurons of rat hippocampal slices. Low frequency stimulation (LFS) consisting of 450 pulses at 1 Hz induced LTD (-14.3%, mean, n = 10) in the slope of the field excitatory postsynaptic potential. SKF-38393 (3-10 microM), an agonist of DA D1 receptors, significantly enhanced LFS-induced LTD (-31.1%, n = 11). SCH-23390 (2 microM), an antagonist of DA D1 receptors, blocked the induction of LTD by LFS (2.5%, n = 6). These results indicate that DA D1 receptors play an important role in the modulation of LFS-induced LTD in rat hippocampal CA1 neurons.  相似文献   

19.
1. The effects of unilateral gamma-ray irradiation at birth on the properties of adult CA3 pyramidal neurons have been studied in hippocampal slices. 2. Neonatal gamma-ray irradiation reduced by 80% the number of granule cells and prevented the formation of mossy fiber synapses without reducing the number of CA3 pyramidal cells. The destruction of the mossy fibers was also confirmed with extracellular recordings. 3. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) evoked by stimulation of the stratum radiatum had similar properties in nonirradiated and irradiated hippocampi: the EPSP reversed polarity near 0 mV, was reduced in amplitude by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)-2-amino-5-phosphonovalerate (APV, 50 microM); the fast and slow IPSPs reversed at -75 and -100 mV, were blocked by bicuculline (10 microM), and reduced by phaclofen (0.5 mM), respectively. 4. Bath application of kainate (300-500 nM) evoked epileptiform activity in 81.5% of nonirradiated hippocampal CA3 regions and only in 29% of the irradiated CA3 regions. In contrast, bath application of high potassium (7 mM) and bicuculline (10 microM) generated spontaneous and evoked epileptiform activity in both nonirradiated and irradiated CA3 regions. 5. In nonirradiated and irradiated CA3 regions, kainate (200-300 nM) reduced the amplitude of the fast and slow IPSPs, reduced spike accommodation, and increased the duration of the action potential generated by a depolarizing pulse. 6. The postsynaptic responses of CA3 neurons to bath application of glutamatergic agonists were similar in nonirradiated and irradiated hippocampi in terms of amplitude, reversal potential, and pharmacology. 7. It is concluded that the most conspicuous effect of neonatal gamma-ray irradiation is to prevent the epileptic action of kainate. We propose that kainate generates epileptiform activity in the intact CA3 region by activating high-affinity binding sites located on the mossy fiber terminals.  相似文献   

20.
On isolated, electrically driven human right atrial strips, carbachol (10(-8)-10(-3) M) concentration-dependently decreased force of contraction prestimulated with 1 microM forskolin; maximal negative inotropic effects of carbachol (10(-6)-3 x 10(-6) M), however, were in atria from patients aged < 25 years (mean age: 16.8 +/- 2.0 years, n = 9) significantly larger than in patients aged 50-69 years (mean age: 62.5 +/- 0.7 years, n = 33) and were further decreased in patients aged > 70 years (mean age: 73.8 +/- 0.6 years, n = 11). We conclude that, in human right atrium, the recently described age-dependent decrease in muscarinic M2 receptor density is accompanied by a decrease in negative inotropic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号