共查询到18条相似文献,搜索用时 46 毫秒
1.
设计了一款采用可调谐有源电感(TAI)的可调增益的小面积超宽带低噪声放大器(LNA),输入级采用共基极结构,输出级采用射随器结构,分别实现了宽带输入和输出匹配;放大级采用带有反馈电阻的共射共基结构以取得宽的带宽,并采用TAI作负载,通过调节TAI的多个外部偏压使LNA的增益可调。结果表明,该LNA在2~9GHz的频带内,通过组合调节有源电感调节端口的偏压可实现S21在16.5~21.1dB的连续可调;S11小于-14.7dB;S22小于-19.3dB;NF小于4.9dB;芯片面积仅为0.049mm2。 相似文献
2.
基于有源电感的全集成超宽带低噪声放大器 总被引:1,自引:0,他引:1
利用有源电感来实现超宽带低噪声放大器(UWB LNA),不但可以减小芯片面积、改善增益平坦度,而且可通过外部调节偏置电压来调谐有源电感的电感值,进而调整设计中没有考虑到的由工艺变化及封装寄生带来的增益退化.采用TSMC 0.35 μm SiGe BiCMOS工艺,利用Cadence设计工具完成了放大器电路及版图的设计.在3.1~10.6 GHz工作频率范围内,通过外部调节电压来调谐有源电感,可使LNA的增益S21在16~19 dB范围内变化,输入输出回波损耗S11,S22均小于-10 dB,噪声为2.4~3.7 dB,输入3阶截点IIP3为-4 dBm.整个电路芯片面积仅为0.11 mm2. 相似文献
3.
4.
5.
本论文设计并实现了一个用于UWB脉冲体制的3-5GHz超宽带平坦增益的全差分低噪声放大器。在电路设计上,采用了一种增益平坦化技术,并且利用了串连建峰与并联建峰技术,分别实现了宽带的输入匹配与整个电路大的增益带宽积。同时,利用反馈技术,进一步拓展带宽和削减带内增益波动。此LNA才用SMIC 0.18um CMOS射频工艺流片验证。测试结果表面电路3dB带宽为2.4~5.5GHz,最高增益可达13.2dB,在3-5GHz的带内增益波动仅为+/- 0.45dB,最低噪声系数为3.2dB.输入匹配性能良好,在2.9~5.4GHz范围内S11<-13dB,电路的输入P1dB为-11.7dBm@5GHz,电路采样1.8v供电,整个差分电路消耗电流9.6mA. 相似文献
6.
5~22GHz平坦高增益单片低噪声放大器 总被引:1,自引:1,他引:1
使用0.25μm G aA s PHEM T工艺技术,设计和制造了性能优良的5-22 GH z两级并联反馈单片低噪声放大器。在工作频率5-22 GH z内,测得增益G≥18 dB,带内增益波动ΔG≤±0.35 dB,噪声系数N F≤3.2 dB,输入输出驻波V SW R≤1.7,最小分贝压缩点输出功率P1dB≥10.5 dBm,电流增益效率达2.77 mA/dB。测试结果验证了设计的正确性。 相似文献
7.
为了实现电感-电容压控振荡器(LC VCO)的全集成和小面积,同时使其振荡频率具有较宽的可调范围和较低的相位噪声,采用差分有源电感和Q值增强共源共栅电路结构,对LC VCO进行设计。采用差分有源电感代替螺旋电感,减小了芯片面积,并利用有源电感的可调性,增大了振荡频率的可调范围。采用Q值增强共源共栅电路结构,增加了LC VCO的输出功率和Q值,进而减小了相位噪声。基于TSMC 0.18 μm RF CMOS工艺,采用Cadence仿真工具对LC VCO进行仿真验证。结果表明,LC VCO振荡频率的可调范围高达129%,在偏离最大振荡频率1 MHz处,最低相位噪声为-121.4 dBc/Hz,直流功耗为11 mW,优值FOMT(考虑到调谐范围)为-193.6 dBc/Hz。 相似文献
8.
9.
针对无线接收机在对不同信号进行放大时,噪声恶化严重的问题,文中在驱动放大级采用电流复用技术,可以降低系统功耗,同时,在增益变化过程中保证了输入级增益对后级电路噪声的抑制作用,使得增益变化过程中,噪声始终低于1 dB。输入级和输出级阻抗匹配良好,在3 GHz~6.3 GHz的工作频段上可实现系统增益的连续可调范围约30 dB(19.6 dB~49.6 dB),同时通过采用两个控制电压分别控制两级放大电路,在增益变化过程中系统获得了良好的增益平坦度,版图尺寸为0.95×1.53 mm2。在常规工作状态下,系统噪声为0.56±0.02 dB,增益为49.6±0.47 dB,功耗97 mW。在4.5 GHz频率处,系统的OP1dB为10.3 dBm, OIP3达到29 dBm,具有良好的线性度。 相似文献
10.
提出一种以SiGe HBT为有源器件的超宽带有源可调衰减器。在超宽频带内实现了宽增益调节范围和高线性度。详细分析了有源衰减器的最小插入损耗及最大衰减量,基于Jazz 0.35μm SiGe HBT工艺,通过选择合适的SiGe HBT有源器件,完成了超宽带有源可调衰减器的设计。利用安捷伦公司的ADS仿真软件,对设计的有源可调衰减器进行仿真验证。结果表明,在3.1~10.6GHz的超宽带内,当电压在0.4~1.8V的范围内变化时,该有源可调衰减器的增益动态范围大于50dB,S11在整个电压变化范围内均低于-10dB,且输入3阶交调点(IIP3)为13dBm。 相似文献
11.
对采用双回转结构交叉耦合差分有源电感(DGC-DAI)的可调谐、高品质因子Q和低噪声差分有源带通滤波器(THQLNA-BPF)进行了研究。输入级,采用差分共基-共射结构,以抑制噪声和获得高频特性;输出级,采用差分共集放大器,以获得高的驱动能力和高的隔离度;有源电感滤波网络,利用DAI电感值可宽范围调谐、高Q值和低的噪声,来分别实现BPF的中心频率的宽范围调节、高Q值和良好的噪声特性;进一步地,利用变容二极管网络改善BPF中心频率的可调性和提高Q值,利用有源可调负阻网络提高BPF的Q值和进行Q值独立调节。基于WIN 0.2μm GaAs HBT工艺,利用ADS对THQLNA-BPF进行性能验证。结果表明:中心频率可在1.68 GHz~4.32 GHz范围内调谐,调谐量达2.64 GHz;最大和最小Q分别达到83.6和33.6;噪声范围为6.04 dB~8.83 dB;在中心频率为3.69 GHz时,输入1 dB压缩点为-7.3 dBm,稳定系数μ>1;静态功耗小于18 mW。 相似文献
12.
采用0.18 μm RF CMOS工艺,设计了一种基于可调谐有源电感的微型宽带Wilkinson功分器,由正跨导放大器、负跨导放大器、构成反馈回路的Cascode电流镜结构与双重外部电压偏置电路构成,新型有源电感基于回转器原理实现。仿真结果表明,中心工作频率为2 GHz时,功分器的插入损耗小于0.15 dB,输入端口与输出端口的回波损耗均大于36 dB,两输出端口间的隔离度大于39 dB。改变外部偏置电压时,中心工作频率可在1.3~3.0 GHz频率范围内调谐。在1.8 V电源电压下,功耗为4.8 mW,版图尺寸为0.3 mm×0.4 mm。 相似文献
13.
Stephan J. G. Gift 《International Journal of Electronics》2013,100(12):1225-1235
A high-performance hybrid transconductance amplifier circuit implemented in both inverting and non-inverting configurations is described. The circuit is based on an operational amplifier–current conveyor arrangement that produces greater accuracy than other circuit configurations. 相似文献
14.
本文研究了一种直接利用晶体管或场效应管来模拟高Q值电感,并利用此电感来制作L波段和S波段窄带有源滤波器的方法。利用此方法制作了两个高性能的窄带有源带通滤波器:一个中心频率为2.3GHz,其带宽为90MHz左右,带内插入损耗为0dB;一个中心频率在1.5GHz左右,并且中心频率可调,其带宽为80MHz左右,带内有10dB的增益 相似文献
15.
16.
17.
基于回转器-电容原理,联合采用回转电容、可调反馈电阻、补偿电容和噪声抵消支路,提出了一种电感值相对于Q值可独立调节的低噪声有源电感。通过改变正-负跨导器之间的回转电容值来实现电感值的调节。因调节电感值而引起的Q值变化,可通过调节正-负跨导器之间的可调反馈电阻值和伪差分对之间的补偿电容值来共同补偿,从而实现电感值相对于Q值的独立调节。通过噪声抵消支路来降低有源电感的噪声。对该有源电感的性能验证表明,协同调节3个外部偏置电压,可实现电感值相对于Q值的独立调节,在电感峰值变化幅度为175.49%时,Q值的峰值变化幅度仅为4.88%。在0~6 GHz内,有源电感的输入参考噪声电流均小于45 pA·Hz-1/2,噪声较低。 相似文献
18.
A method to provide a low power tunable inductor is presented in which the inductance and its equivalent series resistance can be independently tuned. This equivalent series resistance can be also set to negative or zero value that is corresponding to inductor with ideal quality factor. In this method, a varactor is placed in parallel with a passive inductor and then, an active capacitor is placed in series with them. To this end, a low power Tunable Active Capacitor (TAC) is proposed which is capable of generating tunable capacitor and large negative resistance to compensate the loss of tunable inductor circuit. Also, the power consumption is low because of using a diode-connected transistor. A prototype of the proposed circuit is designed and simulated at 4 GHz. The electromagnetic simulation results show the inductance tuning range of 0.48–2.3nH with zero or even negative equivalent series resistance is obtained while the power dissipation is less than 3 mW. Moreover, noise analysis shows that higher inductance translates to lower noise while there is a weak correlation between noise and quality factor of the obtained inductances. 相似文献