首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为提高压缩感知的性能,设计了一种自适应的稀疏观测矩阵,该观测矩阵由0和1组成。信号重构时,利用观测值的位置信息,避免了求解不定方程组,提高了重构速度。采用具有频域稀疏特性的深海隔水管受力参数作为仿真信号,仿真结果表明,观测值数目相同时,自适应观测矩阵下重构算法的平均误差比随机观测矩阵下基追踪算法的平均误差小。  相似文献   

2.
3.
胡强  林云 《计算机应用》2017,37(12):3381-3385
为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 dB以上,低于典型的贝叶斯方法5 dB以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。  相似文献   

4.
观测矩阵的构造是压缩感知中的核心部分之一,观测矩阵的列独立性,观测矩阵与稀疏基的非相干性,对重构图像的质量有重要影响,基于此提出了一种优化算法。该算法实现对观测矩阵进行QR分解以增大其列独立性,同时对格拉姆矩阵进行优化,使其归一化后的特征值逼近N/M,从而增大观测矩阵与稀疏基的非相干性。仿真结果显示,算法在提高图像重构质量,以及重构结果稳定性上都有较好的结果,尤其是在观测值个数较少的情况下,有比其他算法更明显的优势。  相似文献   

5.
观测矩阵的研究在压缩感知中尤为重要,其中观测矩阵的优化是观测矩阵研究中的关键问题之一。根据减小观测矩阵与稀疏矩阵之间的互相关性达到优化观测矩阵的思想,提出了K-L变换观测矩阵优化算法。该算法利用原始信号协方差矩阵的特征向量矩阵对传感矩阵进行变换,从而减小观测矩阵与稀疏矩阵之间的互相关性,进而得到优化后的观测矩阵。仿真结果表明,优化后的观测矩阵重构图像的峰值信噪比值大于未优化观测矩阵重构图像的峰值信噪比值,尤其是在观测数目较少的情况下,用该算法优化后的观测矩阵重构的图像具有较高的精度。  相似文献   

6.
基于可以通过减小压缩感知中观测矩阵与稀疏矩阵之间的互相关性来提高信号的重构质量,结合无约束凸优化问题中梯度下降的思想,提出了一种自适应梯度下降算法(Adaptive Gradient Descent, AGD)。首先利用等角紧框架(Equiangular Tight Frame, ETF)收缩传感矩阵的Gram矩阵,然后通过收缩得到的Gram矩阵建立一个无约束凸优化问题,最后通过梯度下降方法求解无约束凸优化问题进而得到优化后的观测矩阵。AGD算法通过每次更新梯度下降的方向,使Gram矩阵能够在最短时间内逼近ETF。仿真实验表明,该算法不仅迭代次数少,且优化后的观测矩阵与稀疏矩阵之间的互相关性大大降低。与传统的优化算法相比,信号恢复效果更好。  相似文献   

7.
在压缩感知理论中,最为关键的问题是观测矩阵的构造.影响图像重建质量的因素包括观测矩阵列向量间的独立性以及观测矩阵与稀疏基间的互相关性.基于此提出了一种优化算法.该算法采用QR分解以增大观测矩阵列独立性,同时对利用等角紧框架(Equiangular Tight Frame,ETF)收缩的Gram矩阵进行优化,通过更新每次...  相似文献   

8.
李周  崔琛 《计算机应用》2018,38(2):568-572
针对压缩感知(CS)中从优化后的Gram矩阵求解观测矩阵时会出现较大相关系数的问题,在利用现有算法得到优化后的Gram矩阵的基础上,通过求解等价变换后的目标函数对观测矩阵行向量的导数得到目标函数取极值时行向量的值,并通过对误差矩阵进行奇异值分解(SVD)在上述行向量的值中选出使得目标函数取最值时行向量的解析式,在此基础上给出了观测矩阵的优化算法:通过借鉴K-SVD算法中逐行优化目标矩阵的思想,对观测矩阵进行逐行迭代优化,并将相邻两轮迭代产生的观测矩阵所对应的相关性之差作为衡量迭代是否结束的条件。仿真结果表明:该算法在观测矩阵与稀疏基的相关性方面优于改进前的算法,从而提高了重构精度。  相似文献   

9.
针对目前典型的随机观测矩阵在不确定性、硬件实现、存储方面的缺陷,利用混沌序列优异的伪随机性,设计了一种基于帐篷混沌序列的观测矩阵。该矩阵的参数和初始值一旦确定,每一时刻的状态是可以完全重现的,克服了随机观测矩阵需要大量实验求平均来降低不确定性的缺点。仿真实验中,分别利用帐篷混沌观测矩阵和3种典型的随机观测矩阵对不同数据量的图像信号进行压缩与重构,结果表明:所设计的帐篷混沌观测矩阵不但重构性能优于随机观测矩阵,而且也克服了随机观测矩阵在硬件实现、存储方面的缺陷,大大减少了存储空间和传输带宽的压力。  相似文献   

10.
针对压缩感知理论在宽带频谱感知领域应用时重构精度差的问题,根据平稳信号在频域所表现出的稀疏特性,提出了一种基于P-Ifourier(Partial-Inverse fourier)观测矩阵的宽带压缩频谱感知方法。新方法首先将频谱感知问题建模为一个典型的压缩感知问题,利用相关性能优良的标准正交傅里叶基构造观测矩阵,使观测矩阵具有良好的重构性能和重构精度。仿真结果表明,相比于高斯随机观测矩阵和嵌入式混沌序列-循环Toeplitz结构观测矩阵,该方法在较低信噪比环境下能够明显降低信号重构的均方误差,并且在相同条件下的重构概率得到了明显改善。  相似文献   

11.
探索压缩感知理论在语音信号重构中的应用,研究测量矩阵选取对语音信号重构效果的影响.改进传统随机,托普利兹,循环等测量矩阵,尝试将稀疏对角矩阵应用于测量矩阵完成对语音信号的非相干测量.在语音信号上进行实验,分别采用稀疏对角结构测量矩阵和传统测量矩阵,对比它们使用StOMP算法重构语音信号的效果.实验结果表明,采用改进的稀疏对角循环矩阵重构语音信号,较传统矩阵重构的精确度有明显提高,运行时间也有明显缩短.  相似文献   

12.
压缩感知综述   总被引:3,自引:1,他引:2  
尹宏鹏  刘兆栋  柴毅  焦绪国 《控制与决策》2013,28(10):1441-1445
压缩感知理论的诞生使得采样速率与信号的结构和内容相关,并以低于奈奎斯特采样定理要求的频率采样、编码和重构。在实际应用中,为解决数据冗余和资源浪费的瓶颈问题开拓了一条新道路,也为其他学科发展提供了新的契机。从发展历史和研究现状等方面入手,对稀疏表示、测量矩阵的构造、稀疏重构算法和主要应用方面进行了详细的梳理和研究。对当前研究的热点、难点作了分析和探讨,并指出了未来的发展方向和应用前景。  相似文献   

13.
针对块稀疏信号,理论分析和实验验证均表明算法精确重构的充分条件与矩阵块相关性和子相关性有关。在此基础上,提出了一种基于互交替投影的块稀疏正交匹配追踪算法(mutual alternating projection-block or-thogonal matching pursuit,MAP-BOMP)。该算法利用互交替投影方法不断构造新的测量矩阵和感知矩阵,使得矩阵块相关性和子相关性都很小,从而提高重构概率,并给出明确的算法收敛条件,降低了计算复杂度。通过与大多数已有块稀疏信号重构算法进行实验仿真对比,该算法在重构效果和重构速度上均优于其他算法。  相似文献   

14.
压缩感知技术,特别是语音压缩感知技术逐渐成为信号处理领域的研究热点。当前的语音压缩感知关键技术主要包括适合语音信号的稀疏分解矩阵构造,观测矩阵的选择和重构算法的设计。稀疏分解矩阵的重要代表是正交基、基于语音特性的线性预测矩阵和过完备字典。观测矩阵方面主要采用随机观测矩阵分析语音压缩感知性能;重构算法方面重点研究当观测序列或语音信号本身含有噪声时鲁棒的语音压缩感知重构算法。本文对上述语音压缩感知的3大关键技术进行了介绍和对比分析,并对语音压缩感知的应用进行了总结,最后对未来可能的研究热点进行了展望。  相似文献   

15.
本文提出了基于贝叶斯压缩感知的信号重构算法,将压缩感知理论应用于信号的压缩传输以及重构,该算法将压缩感知问题转化为线性回归问题,逐步推演出结果向量之间的迭代关系,最后通过迭代以得到原始信号的精确重构. 仿真说明了贝叶斯压缩感知在信号处理中的应用,结果表明该算法对一维和二维信号的压缩重构有很好的效果.  相似文献   

16.
为解决分段弱正交匹配追踪算法在测量过程中难以获得高精度重构信号的问题,首先对以高斯矩阵为测量矩阵的传统SWOMP算法进行了分析,指出问题的关键在于高斯矩阵列相干性过大会影响残差信号的匹配过程,从而导致部分信号丢失,使重构精度下降;然后,根据分析提出了一种基于部分哈达玛矩阵的分段弱正交匹配追踪(PH-SWOMP)算法,其中部分哈达玛矩阵根据偶数行抽取原则进行构造,可以显著降低测量矩阵的互相关性;最后,通过与传统SWOMP算法的图像重构对比仿真实验对PH-SWOMP算法性能进行了验证,其中传统SWOMP算法分别选取高斯矩阵、托普利兹矩阵等4种矩阵作为测量矩阵.仿真结果表明,在相同条件下,相比于传统SWOMP算法,PH-SWOMP算法信噪比最大提高了53.95%,相应的重构时间缩短了15.41%,具有更小的恢复残差以及更高的信号重构成功率.  相似文献   

17.
The compressed sensing (CS) theory makes sample rate relate to signal structure and content. CS samples and compresses the signal with far below Nyquist sampling frequency simultaneously. However, CS only considers the intra-signal correlations, without taking the correlations of the multi-signals into account. Distributed compressed sensing (DCS) is an extension of CS that takes advantage of both the inter- and intra-signal correlations, which is wildly used as a powerful method for the multi-signals sensing and compression in many fields. In this paper, the characteristics and related works of DCS are reviewed. The framework of DCS is introduced. As DCS's main portions, sparse representation, measurement matrix selection, and joint reconstruction are classified and summarized. The applications of DCS are also categorized and discussed. Finally, the conclusion remarks and the further research works are provided.  相似文献   

18.
为了有效应对新型电力系统中数据量激增、数据采集难度大、采集成本高、通信传输拥挤等问题,进一步提高电力数据的分析应用能力,本文以配电网为具体研究场景,提出基于压缩感知理论的智能配电网数据采集方案并搭建了相应的模型。针对智能配电网的特点,本文从常用的稀疏基与满足约束等距性条件的测量矩阵中分别选取了离散W变换中的特定稀疏基与稀疏随机矩阵作为所提数据采集方案的稀疏基与测量矩阵,并通过分析与仿真得到了适用于该方案的信号长度与压缩测量维数的取值范围。此外,本文还设计了一种基于频率预估的压缩感知重构算法,并在仿真实验中证明该算法相较于正交匹配追踪算法、压缩采样匹配追踪算法、基于光滑L0范数的压缩感知重构算法、基于光滑L0范数和修正牛顿法的压缩感知重构算法这四类算法,在重构精度上有明显的提升,并且基于频率预估的压缩感知重构算法还具有迭代速度快、重构耗时短以及扩展性强的优点。  相似文献   

19.
The compressed sensing (CS) theory makes sample rate relate to signal structure and content. CS samples and compresses the signal with far below Nyquist sampling frequency simultaneously. However, CS only considers the intra-signal correlations, without taking the correlations of the multi-signals into account. Distributed compressed sensing (DCS) is an extension of CS that takes advantage of both the inter- and intra-signal correlations, which is wildly used as a powerful method for the multi-signals sensing and compression in many fields. In this paper, the characteristics and related works of DCS are reviewed. The framework of DCS is introduced. As DCS’s main portions, sparse representation, measurement matrix selection, and joint reconstruction are classified and summarized. The applications of DCS are also categorized and discussed. Finally, the conclusion remarks and the further research works are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号