首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用Gleeble热压缩实验,构建了690合金的挤压工艺的再结晶图,探讨了完全动态再结晶的临界挤压工艺,将合金的热变形组织演变模型带入deform-2D有限元软件,并针对挤压中合金的组织演变过程对有限元软件进行了二次开发,进而模拟计算了挤压比、坯料温度以及挤压速率对690合金挤压管组织的影响规律,依据挤压机设备能力以及组织要求提出了挤压工艺的控制方法,并进一步根据有限元计算结果进行实际挤压验证。结果表明:挤压管的晶粒尺寸随着挤压比的增大呈现出先降低后增加的趋势;690合金挤压管的晶粒尺寸随坯料温度和挤压速度的降低而减小;当坯料温度在1200℃,挤压比为15.3,挤压速率200 mm/s时,挤压管的晶粒尺寸可以控制在62.7 μm以下;模拟计算结果与挤压管的相对误差仅为4.5%。  相似文献   

2.
采用脉冲法对马氏体NiTi形状记忆合金(SMAs)进行高应变速率(3 × 103/s)压缩试验,同时在Instron试验机上进行了低应变速率(3 × 10-4/s和1.5 × 10-2/s)的拉伸、压缩试验以做比较.研究了两种变形的应力-应变曲线特征,及用差动式扫描热量计(DSC)测定了两种变形前后试样的相变特征. 试样材料为冷拔NiTi棒,直径6.7mm经600℃ × 30min退火,再水淬至室温.试验前所有试样均用液氮(-196℃)淬火,以确保完全马氏体化. 低速试验的应变速率采用3 × 10-4/s和…  相似文献   

3.
采用G1eeble-1500热模拟试验机研究了温度和应变速率对半固态AISi7Mg合金变形性的影响。从中得知,半固态合金的压缩流动应力不仅是变形温度的函数,而且是应变速率的函数,变形温度和应变速率决定了半固态压缩变形的特征。  相似文献   

4.
通过控制应变水平,采用热模拟准静态压缩和霍普金森压杆高应变速率压缩相结合的技术,实现了锆合金不同应变速率条件下的塑性变形。结果表明:锆合金准静态压缩和高应变速率压缩的主要区别在于变形后期。准静态压缩时,位错在晶粒内部塞积成为锆合金塑性变形的主要方式,导致基体晶粒内部累积取向差逐渐增加;而高应变速率压缩时,剪切带成为锆合金塑性变形的主要方式。剪切带塑性变形方式的出现,部分协调了锆合金的塑性变形,导致基体晶粒内部累积取向差较低。  相似文献   

5.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

6.
在最近几年里,人们对钨基重合会产生了愈来愈大的兴趣.由于它们的高密度、高强度和塑性,这类合金是制造穿甲弹头的理想材料.但是,由鹤重合金做成的功能穿甲弹头显示出有限的性能,其主要原因是弹头的过份召荡形状,这与该合金的剪切应变局部化有关.正是由于这种原因,必须开发能够克团剪切变形局部化的,新型的鸿基复合材料.作为查明局部化行为的第一步,则是确定鹤基复合材料在动力学载荷状态下的力学性能和机械行为.事实证明,穿甲材料在高达ZGP~&3P8的液回压力下经受了极高应变速率(10K一m书)下的剪切变形.据报道,美国约…  相似文献   

7.
采用金相及透射电子显微镜对高氮奥氏体Fe-20Mn-19Cr-0. 6N钢在应变速率范围为3×10-6~1 s-1条件下的拉伸变形行为进行了研究。研究结果表明:N元素的固溶强化作用和促使位错平面滑移阻碍位错运动机制是高氮奥氏体钢的重要应变硬化机制,同时,随着应变速率的提升,这种强化机制不断提升,而应变诱导孪生机制不断削弱。随着应变速率的提升,高氮奥氏体钢的抗拉强度和屈服强度均呈逐步上升的趋势,断后伸长率则逐步下降。屈服强度提升超过60%,而抗拉强度提升仅10%。随着应变速率的提升,基体变形程度逐步下降,材料的位错密度和滑移带密度逐步下降。  相似文献   

8.
对A1-Mg—Sc材料进行静态力学性能实验,采用微型SHPB(Split Hopkinson pressurebar)实验装置对Al-Mg-Sc材料在应变率为10310。范围内进行动态力学行为测试。结果表明:Mg-Sc合金材料随应变率的提高,真实应力一应变曲线略有升高,表明Al-Mg-Sc材料不是一种对应变率敏感的材料;随着应变率的升高,材料发生的应变增大,表现出在高应变率下具有明显的应变强化效应。通过分析,选用较为合理的Johnson--Cook本构模型来构建A1.Mg.Sc合金高应变速率流变方程。根据遗传算法确定J—c方程中的参数。拟合值与实验值较吻合,证明经SHPB实验数据构建的流变方程是合理的,这为Al-Mg-Sc板料高应变速率下有限元分析需要的材料变形特性参数提供了重要的数据来源。  相似文献   

9.
采用Gleeble-1500热模拟试验机研究了温度和应变速率对半固态A1Si7Mg合金变形性的影响。从中得知,半固态合金的压缩流动应力不仅是变形温度的函数,而且是应变速率的函数,变形温度和应变速率决定了半固态压缩变形的特征。  相似文献   

10.
微量硼和应变速率对变形TiAl合金室温力学性能的影响   总被引:5,自引:0,他引:5  
以形变Ti47Al2Mn2Nb合金为对象,研究了微量硼合金化和应变速率对TiAl合金室温力学性能的影响。发现添加微量(1.0%,摩尔分数)硼就能有效地细化形变Ti47Al2Mn2Nb合金的近全片层组织,显著提高其室温强度,并在一定程度上改善室温塑性;变形TiAl合金不论添硼与否,其室温强度均随应变速率的升高而升高,而延伸率对应变速率不太敏感;微量硼合金化和应变速率对变形TiAl合金室温断裂方式无明显影响。  相似文献   

11.
利用物理模拟实验方法对具有不同晶粒尺寸的690合金试样进行热压缩变形实验,变形温度范围为1100~1200℃,应变速率分别为0.1,1,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析,建立了包含初始晶粒度参数的本构关系模型。结果表明:晶粒尺寸增大使690合金高温变形时的流变应力增加,发生动态再结晶的临界应变增大,动态再结晶体积分数减小,根据所建立的流变应力本构模型计算出的流变应力值与实验值相近,从而完善了690合金的热变形本构方程。  相似文献   

12.
690合金高温变形行为与动态再结晶模型   总被引:1,自引:0,他引:1  
利用物理模拟实验方法对690合金进行恒温恒速压缩实验,变形温度范围为1050~1250℃,应变速率分别为0.1,1、5,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析。建立了690合金高温热变形的本构方程和动态再结晶模型。结果表明:690合金高温变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述,所建立流变应力本构模型的预测值与实验值吻合较好,建立了690合金的动态再结晶模型,为热挤压过程中的组织控制提供理论依据。  相似文献   

13.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

14.
采用快速热挤压技术对细晶93W-4.9Ni-2.1Fe-0.03Y%进行变形强化,研究了高应变率下挤压态细晶钨合金动态力学性能及失效行为。结果表明:在较低应变速率下的挤压态细晶钨合金的屈服强度相近,约2000 MPa;断面上的钨颗粒被严重拉长直至破碎,破碎的细小钨颗粒粘附在软化的粘结相中,随着应变率的增加钨颗粒变形更加明显;剖面观察发现:沿着断裂面的钨颗粒发生了高度的剪切变形,而内部区域则基本没有变形,表现出了剪切局域化迹象。实验结果证明了挤压态细晶钨合金在动态加载条件下的失效方式是绝热剪切失效。  相似文献   

15.
采用TIG焊在不锈钢表面堆焊Inconel 690合金,并取部分试件在压强150 MPa,温度为1 120℃的条件下热等静压(HIP)处理2h。借助于金相显微镜(OM)、扫描电镜(SEM)观察了HIP处理前后Inconel 690合金堆焊层的组织以及浸泡腐蚀后的微观形貌;并通过浸泡腐蚀试验、极化曲线和电化学阻抗谱,研究了HIP对堆焊层在含Cl-溶液中腐蚀行为的影响。结果表明:HIP处理后堆焊层内部晶界处析出大量碳化物(Cr23C6),致使其在腐蚀液中由先前的点蚀转变为了晶间腐蚀;HIP处理后堆焊层的耐蚀性变差,其腐蚀速率约为HIP处理前的2.3倍。  相似文献   

16.
初始状态对Ti600钛合金热变形的影响   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟试验机上采用等温压缩试验的方法研究了Ti600合金2种状态下的热塑性变形行为,获得了合金在温度为800~1100℃,变形速率为0.001~10s-1范围内的流变应力数据,并计算了合金2种状态条件下的变形激活能Q。结果表明:不同的初始状态对合金的热变形行为有影响,经过热加工处理后的合金变形激活能比铸态条件下的变形激活能高;合金在2种状态下的变形激活能分别为:在(α+β)相区为475和644kJ·mol-1,在β区为101和239kJ·mol-1。在(α+β)相区动态再结晶是合金的主要软化机制,而在β区软化机制则以动态回复为主。  相似文献   

17.
目的研究变形量对690合金电化学行为的影响。方法采用动电位极化、电化学阻抗和高温高压浸泡实验,结合扫描电子显微镜(SEM)、X射线光谱仪(EDX)和X射线光电子能谱(XPS),研究不同变形量的690合金传热管在核电模拟液中的腐蚀行为。结果在常温常压下,50%变形量试样的自腐蚀电位比25%变形量试样正140 m V,维钝电流密度显著降低,阻抗模值高出约10倍。高温高压下浸泡后,XPS分析显示,50%变形量试样表面腐蚀产物膜中的Cr2O3含量远高于25%变形量试样,其富Cr内层致密,氧化层更厚。结论 50%变形量的690合金表面形成的钝化膜及腐蚀产物膜对基体的保护作用更强。  相似文献   

18.
采用高温压缩实验研究了新型Al-Zn-Mg-Cu高强铝合金在温度300~450℃、应变速率0.001~10 s-1和压缩变形程度30%~80%范围内的热变形行为和组织演变。分析了该合金在实验参数范围内变形的应力-应变曲线特征。动力学分析获得该合金热变形的应力指数和激活能分别为4.97和150.07 kJ/mol,表明合金的热变形主要受扩散所控制。金相组织观察发现,随着变形温度的升高或应变速率的降低,变形组织晶内析出相逐渐溶入基体组织,晶内组织逐渐趋于均匀;同时粗大的晶粒沿变形方向拉长,晶界难溶相的碎化和弥散化程度增大。TEM和EBSD(electron back-scattered diffraction)组织分析表明,该合金在高温压缩变形过程中组织演变主要是亚晶的形成和完善的过程,热变形组织演变机理为动态回复和大应变几何动态再结晶。  相似文献   

19.
钛合金热挤压的有限元模拟   总被引:3,自引:0,他引:3  
采用有限元模拟技术研究了Ti-6Al-4V合金热挤压变形过程,并将所得的结果与实验结果进行了比较。通过模拟计算获得了在不同挤压变形条件下,变形区的应力、应变和温度的分布规律。结果表明,在钛合金的挤压变形过程中,由变形而引起的湿升显著,最高可达160℃。温升主要集中在挤压过程的前期阶段。由于温升引起流变应力下降,从而导致变形区的扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号