首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
为解决脉冲神经网络训练困难的问题,基于仿生学思路,提出脉冲神经网络的权值学习算法和结构学习算法,设计一种含有卷积结构的脉冲神经网络模型,搭建适合脉冲神经网络的软件仿真平台。实验结果表明,权值学习算法训练的网络对MNIST数据集识别准确率能够达到84.12%,具备良好的快速收敛能力和低功耗特点;结构学习算法能够自动生成网络结构,具有高度生物相似性。  相似文献   

2.
深度神经网络在实际应用中的局限性日益凸显,具备生物可解释性的类脑计算脉冲神经网络成为了人们研究的热点课题。应用场景的不确定性及复杂多样性给研究者提出了新的挑战,要求类似生物大脑组织具备多尺度架构的类脑计算脉冲神经网络,能够实现对多模态、不确定性信息的感知决策功能。文中主要介绍了多尺度生物合理性的类脑计算脉冲神经网络模型及其面向多模态信息表征和不确定信息感知的学习算法,并分析探讨了基于忆阻器互联的脉冲神经网络可实现多尺度架构类脑计算的两个关键技术问题,即多模态、不确定信息与脉冲时序表示一致性问题和多尺度脉冲神经网络学习算法与容错计算问题。最后,对类脑计算脉冲神经网络的研究方向进行了分析与展望。  相似文献   

3.
近年来,起源于计算神经科学的脉冲神经网络因其具有丰富的时空动力学特征、多样的编码机制、契合硬件的事件驱动特性等优势,在神经形态工程和类脑计算领域已得到广泛的关注.脉冲神经网络与当前计算机科学导向的以深度卷积网络为代表的人工神经网络的交叉融合被认为是发展人工通用智能的有力途径.对此,回顾了脉冲神经网络的发展历程,将其划分为神经元模型、训练算法、编程框架、数据集以及硬件芯片等5个重点方向,全方位介绍脉冲神经网络的最新进展和内涵,讨论并分析了脉冲神经网络领域各个重点方向的发展机遇和挑战.希望本综述能够吸引不同学科的研究者,通过跨学科的思想交流与合作研究,推动脉冲神经网络领域的发展.  相似文献   

4.
相较于第1代和第2代神经网络,第3代神经网络的脉冲神经网络是一种更加接近于生物神经网络的模型,因此更具有生物可解释性和低功耗性。基于脉冲神经元模型,脉冲神经网络可以通过脉冲信号的形式模拟生物信号在神经网络中的传播,通过脉冲神经元的膜电位变化来发放脉冲序列,脉冲序列通过时空联合表达不仅传递了空间信息还传递了时间信息。当前面向模式识别任务的脉冲神经网络模型性能还不及深度学习,其中一个重要原因在于脉冲神经网络的学习方法不成熟,深度学习中神经网络的人工神经元是基于实数形式的输出,这使得其可以使用全局性的反向传播算法对深度神经网络的参数进行训练,脉冲序列是二值性的离散输出,这直接导致对脉冲神经网络的训练存在一定困难,如何对脉冲神经网络进行高效训练是一个具有挑战的研究问题。本文首先总结了脉冲神经网络研究领域中的相关学习算法,然后对其中主要的方法:直接监督学习、无监督学习的算法以及ANN2SNN的转换算法进行分析介绍,并对其中代表性的工作进行对比分析,最后基于对当前主流方法的总结,对未来更高效、更仿生的脉冲神经网络参数学习方法进行展望。  相似文献   

5.
脉冲神经网络(spiking neural network,SNN)以异步事件驱动,支持大规模并行计算,在改善同步模拟神经网络的计算效率方面具有巨大潜力.然而,目前SNN仍然面临无法直接训练的难题,为此,受到神经科学领域关于LIF(leaky integrate-and-fire)神经元响应机制研究启发,提出了一种新的...  相似文献   

6.
人脑具有协同多种认知功能的能力与极强的自主学习能力, 随着脑与神经科学的快速发展, 亟需计算结构模拟人脑的、性能更强大的计算平台进行人脑智能与认知行为机制的进一步探索. 受人脑神经机制的启发, 本文提出了基于神经认知计算架构的众核类脑计算系统BiCoSS, 该系统以并行计算的现场可编程门阵列(Field-programmable gate array, FPGA)为核心处理器, 以地址事件表达的神经放电作为信息传递载体, 以具有认知计算功能的神经元作为信息处理单元, 实现了四百万神经元数量级大规模神经元网络认知行为的实时计算, 填补了从细胞动力学层面理解人脑认知功能的鸿沟. 实验结果从计算能力、计算效率、功耗、通信效率、可扩展性等方面显示了BiCoSS系统的优越性能. BiCoSS通过人脑信息处理的计算架构以更贴近神经科学本质的模式实现了类脑智能; 同时, BiCoSS为神经认知和类脑计算的研究和应用提供了新的有效手段.  相似文献   

7.
8.
俞诗航  易梦军  吴洲  申富饶  赵健 《软件学报》2025,36(4):1758-1795
受生物神经系统启发, 神经形态计算的概念于20世纪80年代被提出, 旨在模拟生物大脑的结构和功能, 实现更高效、更具生物合理性的计算方式. 作为神经形态计算的代表模型, 脉冲神经网络(SNN)因其脉冲稀疏性, 事件驱动性、生物可解释性以及硬件契合性等优势, 在资源严格受限的边缘智能任务中得到了广泛应用. 针对脉冲神经网络的边缘部署情况进行梳理和汇总, 首先从脉冲神经网络模型自身的原理出发, 论述脉冲神经网络的高能效计算方式以及巨大的边缘部署潜力. 然后介绍当下常见的脉冲神经网络硬件实现工具链, 并重点对脉冲神经网络在各类神经形态硬件平台的部署情况做详细的整理与分析. 最后, 考虑到硬件故障行为已发展为当下研究中不可避免的问题, 对脉冲神经网络边缘部署时的故障与容错研究进行概述. 从软件模型原理到硬件平台实现, 全面系统地介绍神经形态计算的最新进展, 分析脉冲神经网络边缘部署时遇到的困难与挑战, 并针对这些挑战给出未来可能的解决方向.  相似文献   

9.
张铁林  徐波 《计算机学报》2021,44(9):1767-1785
脉冲神经网络(Spiking Neural Network,SNN)包含具有时序动力学特性的神经元节点、稳态-可塑性平衡的突触结构、功能特异性的网络环路等,高度借鉴了生物启发的局部非监督(如脉冲时序依赖可塑性、短时突触可塑性、局部稳态调节等)、全局弱监督(如多巴胺奖赏学习、基于能量的函数优化等)的生物优化方法,因此具有强大的时空信息表征、异步事件信息处理、网络自组织学习等能力.SNN的研究属于交叉学科,将深入融合脑科学和计算机科学,因此对其研究也可以主要分为两大类:一类是以更好地理解生物系统为最终目的 ;另一类是以追求卓越计算性能为优化目标.本文首先对当前这两大类SNN的研究进展、研究特点等进行分析,重点介绍基于Spike的多类异步信息编码、基于Motif分布的多亚型复杂网络结构、多层时钟网络自组织计算、神经形态计算芯片的软硬结合等.同时,介绍一种融合生物多尺度、多类型神经可塑性的高效SNN优化策略,使得SNN中的信度分配可以从宏观尺度有效覆盖到微观尺度,如全部的网络输出、网络隐层状态、局部的各个神经节点等,并部分解答生物系统是如何通过局部参数的调优而实现全局网络优化的问题.这将不仅为现有人工智能模型提高其认知能力指明一种可能的生物类优化方向,还为反向促进生命科学中生物神经网络的可塑性研究新发现提供启发.本文认为,脉冲神经网络的发展目标不是构建人工神经网络的生物版本替代品,而是通过突破生物启发的多尺度可塑性优化理论,去粗取精,最终实现具有生物认知计算特色的新一代高效脉冲神经网络模型,使其有望获得更快的学习速度、更小的能量消耗、更强的适应性和更好的可解释性等.  相似文献   

10.
随着人工智能的发展,目前主流的神经网络面临着计算量大、功耗高、智能化程度低等问题.为解决以上问题,根据人脑的特性,提出具有普适性的多层脉冲神经网络结构,利用生物学的因果律提出脉冲神经网络算法.通过控制引导神经元的激活时间间接调整目标权值,将算法应用在扑克游戏中,使扑克机器人能够学习一个人的打牌能力,实现拟人化程度为...  相似文献   

11.
目的 类脑计算,是指仿真、模拟和借鉴大脑神经网络结构和信息处理过程的装置、模型和方法,其目标是制造类脑计算机和类脑智能。方法 类脑计算相关研究已经有20多年的历史,本文从模拟生物神经元和神经突触的神经形态器件、神经网络芯片、类脑计算模型与应用等方面对国内外研究进展和面临的挑战进行介绍,并对未来的发展趋势进行展望。结果 与经典人工智能符号主义、连接主义、行为主义以及机器学习的统计主义这些技术路线不同,类脑计算采取仿真主义:结构层次模仿脑(非冯·诺依曼体系结构),器件层次逼近脑(模拟神经元和神经突触的神经形态器件),智能层次超越脑(主要靠自主学习训练而不是人工编程)。结论 目前类脑计算离工业界实际应用还有较大差距,这也为研究者提供了重要研究方向与机遇。  相似文献   

12.
王瑞东  王睿  张天栋  王硕 《自动化学报》2024,50(8):1485-1501
传统机器人经过长时间的研究和发展, 已经在生产和生活的多个领域得到了广泛的应用, 但在复杂多变的环境中依然缺乏与真实生物类似的灵活性、稳定性和适应能力. 类脑智能作为一种新型的机器智能, 使用计算建模的方法模拟生物神经系统的各类特性, 进而实现对各类信息的推理和决策, 近年来受到了学术界的广泛关注. 鉴于此, 综述了国内外面向机器人系统的类脑智能研究现状, 并对类脑智能方法在机器人感知、决策和控制三个研究方向的成果进行了整理、归纳和分析, 最后从软硬件层面分别指出了机器人类脑智能目前存在的主要问题和未来的发展方向.  相似文献   

13.
随着深度学习在训练成本、泛化能力、可解释性以及可靠性等方面的不足日益突出,类脑计算已成为下一代人工智能的研究热点。脉冲神经网络能更好地模拟生物神经元的信息传递方式,且具有计算能力强、功耗低等特点,在模拟人脑学习、记忆、推理、判断和决策等复杂信息方面具有重要的潜力。本文对脉冲神经网络从以下几个方面进行总结:首先阐述脉冲神经网络的基本结构和工作原理;在结构优化方面,从脉冲神经网络的编码方式、脉冲神经元改进、拓扑结构、训练算法以及结合其他算法这5个方面进行总结;在训练算法方面,从基于反向传播方法、基于脉冲时序依赖可塑性规则方法、人工神经网络转脉冲神经网络和其他学习算法这4个方面进行总结;针对脉冲神经网络的不足与发展,从监督学习和无监督学习两方面剖析;最后,将脉冲神经网络应用到类脑计算和仿生任务中。本文对脉冲神经网络的基本原理、编码方式、网络结构和训练算法进行了系统归纳,对脉冲神经网络的研究发展具有一定的积极意义。  相似文献   

14.
人工神经网络(Artificial neural networks,ANNs)与强化学习算法的结合显著增强了智能体的学习能力和效率.然而,这些算法需要消耗大量的计算资源,且难以硬件实现.而脉冲神经网络(Spiking neural networks,SNNs)使用脉冲信号来传递信息,具有能量效率高、仿生特性强等特点,且有利于进一步实现强化学习的硬件加速,增强嵌入式智能体的自主学习能力.不过,目前脉冲神经网络的学习和训练过程较为复杂,网络设计和实现方面存在较大挑战.本文通过引入人工突触的理想实现元件——忆阻器,提出了一种硬件友好的基于多层忆阻脉冲神经网络的强化学习算法.特别地,设计了用于数据——脉冲转换的脉冲神经元;通过改进脉冲时间依赖可塑性(Spiking-timing dependent plasticity,STDP)规则,使脉冲神经网络与强化学习算法有机结合,并设计了对应的忆阻神经突触;构建了可动态调整的网络结构,以提高网络的学习效率;最后,以Open AI Gym中的CartPole-v0(倒立摆)和MountainCar-v0(小车爬坡)为例,通过实验仿真和对比分析,验证了方案的有效性和相对于传统强化学习方法的优势.  相似文献   

15.
视频是视觉信息处理的基础概念,传统视频的帧率只有几十Hz,不能记录光的高速变化过程,成为限制机器视觉速度的天花板,其根本原因在于视频概念脱胎于胶片成像,未能发挥电子和数字技术的潜力。脉冲视觉模型通过感光器件捕获光子,累积能量达到约定阈值时产生脉冲,形成脉冲的时间越长,表明收到的光信号越弱,反之光信号越强,据此可估计任意时刻的光强,从而实现连续成像。采用普通器件,研制了比影视视频快千倍的超高速成像芯片和相机,进而基于脉冲神经网络实现了超高速目标检测、跟踪和识别,打破了机器视觉提速依赖算力线性增长的传统范式。本文从脉冲视觉模型表达视觉信息的生物学基础和物理原理出发,介绍了脉冲视觉原理的软件模拟器及其模拟真实世界光子传播的计算过程,描述了基于脉冲视觉原理的高灵敏光电传感器件及芯片的工作机理和结构设计、基于脉冲视觉的影像重建原理以及脉冲视觉信号与普通图像信号融合的计算摄像算法与计算摄像系统,介绍了基于脉冲神经网络的超高速运动目标检测、跟踪与识别,通过对比国际国内相关研究内容和发展现状,展望了脉冲视觉的发展与演进方向。脉冲视觉芯片和系统在工业(高铁、电力和轮机等不停机监测,智能制造高速监视等)、民用(高速相机、智能交通、辅助驾驶、司法取证和体育判罚等)以及国防(高速对抗)等领域都具有巨大应用潜力,是未来值得重点关注和研究的一个重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号