共查询到16条相似文献,搜索用时 46 毫秒
1.
在容量不同的平行批处理机环境下, 针对工件带有不同尺寸和机器适用限制的最小化制造跨度的批调度问题, 提出一种有效的蚁群优化算法. 该算法基于解的浪费空间定义启发式信息, 针对机器容量约束提出两种用于构建解的候选集, 从而有效缩小搜索空间, 并引入局部优化方法提高解的质量. 仿真实验结果表明, 所提出算法具有较好的性能, 并且优于已有的其他算法.
相似文献2.
3.
针对最小化制造跨度的差异工件尺寸单批处理机调度问题,通过将其转化为最小化浪费空间的问题,采用候选集策略构建分批以减少搜索空间,利用基于浪费空间的启发式更新信息素,提出一种改进的最大最小蚁群算法。此外,在算法中还引入了一种局部优化策略,以进一步提高算法的性能。仿真实验结果表明,所提出的算法优于其他几种已有算法,验证了所提出算法的有效性和鲁棒性。 相似文献
4.
5.
流水作业批调度问题优化算法研究 总被引:1,自引:0,他引:1
为解决流水作业环境作业尺寸有差异的批调度问题,建立了基于混合整数规划方法的最大时间跨度模型,分析问题的计算复杂性,给出设备数、作业数既定情况下的可行解规模.设计一种混合蚁群算法对最大时间跨度进行优化,结合算法的搜索机制和批调度启发式规则,实现了最小化最大时间跨度.利用模拟退火方法改进蚁群算法路径选择,避免算法陷入局部最优和过早收敛.实验设计随机算例,对各类不同规模的算例进行仿真实验,实验结果表明混合蚁群算法在最优解、平均运行时间和最大时间跨度等方面优于其他同类算法. 相似文献
6.
研究不同尺寸工件单机批调度问题,将蚁群算法与模拟退火算法相结合,引入自适应状态转移概率,提出了一种自适应蚁群退火算法AACSA(adaptive ant colony simulated annealing)。该算法利用模拟退火算法实现了一种新的混合信息素更新策略,此外根据停滞次数,动态改变状态转移概率,有效地避免算法陷入停滞以及局部最优,提高算法的性能。仿真实验结果表明,AACSA与蚁群优化算法BACO、模拟退火算法SA、启发式规则BFLPT相比,算法求解的性能更好。 相似文献
7.
现有的混合关键级系统调度策略如AMC、SMC等大多以牺牲低关键级任务的方式保证高关键级任务的执行,不符合实际工业设计且破坏数据完整性。对此建立一种新的混合多关键级任务模型,基于响应时间分析提出两种调度策略:AMC-we-x和AMC-we-max-x。线下估计任务集在这两种调度策略下的可调度比率,与已有的混合多关键系统调度策略AMC-arb-x、AMC-max-x进行比较。结果表明,提出的两个调度策略在一定程度上能够实现调度低关键级任务的积极调度,可以通过改变弱约束模式参数调整任务的服务水平。 相似文献
8.
模糊环境下多目标差异作业单机批调度问题研究 总被引:1,自引:0,他引:1
针对现实生产制造系统中存在的时间参数模糊化问题,采用梯形模糊数表征时间参数,给出一种具有模糊交货期和模糊加工时间,以最小化提前/拖期惩罚、制造跨度以及加工费用为目标的多目标差异作业单机批调度问题模型.在对该问题进行求解方面,针对基本粒子群算法容易陷入局部最优的问题,引入混沌局部搜索策略,给出了一种基于混沌优化技术的混合粒子群算法.仿真实验验证了所提出算法的可行性和有效性. 相似文献
9.
10.
11.
We study the problem of scheduling on parallel batch processing machines with different capacities under a fuzzy environment to minimize the makespan. The jobs have non-identical sizes and fuzzy processing times. After constructing a mathematical model of the problem, we propose a fuzzy ant colony optimization (FACO) algorithm. Based on the machine capacity constraint, two candidate job lists are adopted to select the jobs for building the batches. Moreover, based on the unoccupied space of the solution, heuristic information is designed for each candidate list to guide the ants. In addition, a fuzzy local optimization algorithm is incorporated to improve the solution quality. Finally, the proposed algorithm is compared with several state-of-the-art algorithms through extensive simulated experiments and statistical tests. The comparative results indicate that the proposed algorithm can find better solutions within reasonable time than all the other compared algorithms. 相似文献
12.
We investigate the problem of scheduling a set of jobs with arbitrary sizes and unequal weights on a set of parallel batch machines with non-identical capacities. The objective is to minimize the makespan of the accepted jobs and the total rejection penalty of the rejected jobs, simultaneously. To address the studied problem, a Pareto-based ant colony optimization algorithm with the first job selection probability (FPACO) is proposed. A weak-restriction selection strategy is proposed to obtain the desirability of candidate jobs. Two objective-oriented heuristic information and pheromone matrices are designed, respectively, to record the experience in different search dimensions. Moreover, a local optimization algorithm is incorporated to improve the solution quality. Finally, the proposed algorithm is compared with four existing algorithms through extensive simulation experiments. The experimental results indicate that the proposed algorithm outperforms all of the compared algorithms within a reasonable time. 相似文献
13.
Jean‐Paul Arnaout 《International Transactions in Operational Research》2017,24(6):1347-1355
In this paper, the NP‐hard two‐machine scheduling problem with a single server is addressed. The problem consists of a given set of jobs to be scheduled on two identical parallel machines, where each job must be processed on one of the machines, and prior to processing, the job is set up on its machine using one server; the latter is shared between the two machines. An ant colony optimization (ACO) algorithm is introduced for the problem and its performance was assessed by comparing with an exact solution (branch and bound [B&B]), a genetic algorithm (GA), and simulated annealing (SA). The computational results reflected the superiority of “ACO” in large problems, with a performance similar to SA and GA in smaller problems, while solving the tested problems within a reasonable computational time. 相似文献
14.
15.
《Concurrency and Computation》2018,30(11)
Maximization of availability and minimization of the makespan for transaction scheduling in an on‐demand computing system is an emerging problem. The existing approaches to find the exact solutions for this problem are limited. This paper proposes a task scheduling algorithm using ant colony optimization (MATS_ACO) to solve the mentioned problem. In this method, first, availability of the system is computed, and then, the transactions are scheduled using the foraging behavior of ants to find the optimal solutions. We also modify two known meta‐heuristic algorithms such as genetic algorithm (GA) and extremal optimization (EO) to obtain transaction scheduling algorithms for the purpose of comparison with our proposed algorithm. The compared results show that the proposed algorithm performs better than others. 相似文献
16.
蚁群优化算法应用于复杂问题的求解是非常耗时的。文章在MATLAB环境下实现了一个基于GPU+CPU的并行MAX-MIN蚁群系统,并将其应用于旅行商问题的求解。让全部蚂蚁共享一个伪随机数矩阵,一个信息素矩阵,一个禁忌矩阵和一个概率矩阵,并运用了一个全新的基于这些矩阵的随机选择算法—AIR(All-In-Roulette)。文章还介绍了如何使用这些矩阵来构造并行蚁群优化算法,并与相应串行算法进行了比较。计算结果表明新的并行算法比相应串行算法要高效很多。 相似文献