共查询到19条相似文献,搜索用时 78 毫秒
1.
在容量不同的平行批处理机环境下, 针对工件带有不同尺寸和机器适用限制的最小化制造跨度的批调度问题, 提出一种有效的蚁群优化算法. 该算法基于解的浪费空间定义启发式信息, 针对机器容量约束提出两种用于构建解的候选集, 从而有效缩小搜索空间, 并引入局部优化方法提高解的质量. 仿真实验结果表明, 所提出算法具有较好的性能, 并且优于已有的其他算法. 相似文献
2.
调度问题是组合优化领域中一类重要的问题,批调度问题更是考虑了工件的尺寸和机器的容量,增加了调度的难度. 本文针对差异工件批调度问题,把蚁群算法和鱼群算法相结合,提出了一种混合算法:引入鱼群算法中拥挤度的概念,并且与蚁群算法相结合,这不仅能避免算法早熟现象的发生,也加快了算法后期的收敛速度. 通过负载率与利用率的比较,混合算法相对于单一的算法,有着更高的效率和更好的效果,能够使寻优个体更快的寻找到满意解. 相似文献
3.
针对差异工件的单机批调度问题,提出了动态自适应加权多态蚁群算法对最大完工时间进行优化,该算法引入了不同种类的蚁群,每种蚁群都有不同的信息素调控机制,并根据批调度问题对不同种类的蚁群的状态转移概率和信息素更新机制进行了改进,同时将局域搜索与全局搜索相结合,从而更符合蚁群的真实信息处理机制。对不同规模的算例进行了仿真,结果验证了该算法的有效性和可行性。 相似文献
4.
针对最小化制造跨度的差异工件尺寸单批处理机调度问题,通过将其转化为最小化浪费空间的问题,采用候选集策略构建分批以减少搜索空间,利用基于浪费空间的启发式更新信息素,提出一种改进的最大最小蚁群算法。此外,在算法中还引入了一种局部优化策略,以进一步提高算法的性能。仿真实验结果表明,所提出的算法优于其他几种已有算法,验证了所提出算法的有效性和鲁棒性。 相似文献
5.
为解决流水作业环境作业尺寸有差异的批调度问题,建立了基于混合整数规划方法的最大时间跨度模型,分析问题的计算复杂性,给出设备数、作业数既定情况下的可行解规模.设计一种混合蚁群算法对最大时间跨度进行优化,结合算法的搜索机制和批调度启发式规则,实现了最小化最大时间跨度.利用模拟退火方法改进蚁群算法路径选择,避免算法陷入局部最优和过早收敛.实验设计随机算例,对各类不同规模的算例进行仿真实验,实验结果表明混合蚁群算法在最优解、平均运行时间和最大时间跨度等方面优于其他同类算法. 相似文献
6.
研究不同尺寸工件单机批调度问题,将蚁群算法与模拟退火算法相结合,引入自适应状态转移概率,提出了一种自适应蚁群退火算法AACSA(adaptive ant colony simulated annealing)。该算法利用模拟退火算法实现了一种新的混合信息素更新策略,此外根据停滞次数,动态改变状态转移概率,有效地避免算法陷入停滞以及局部最优,提高算法的性能。仿真实验结果表明,AACSA与蚁群优化算法BACO、模拟退火算法SA、启发式规则BFLPT相比,算法求解的性能更好。 相似文献
7.
现有的混合关键级系统调度策略如AMC、SMC等大多以牺牲低关键级任务的方式保证高关键级任务的执行,不符合实际工业设计且破坏数据完整性。对此建立一种新的混合多关键级任务模型,基于响应时间分析提出两种调度策略:AMC-we-x和AMC-we-max-x。线下估计任务集在这两种调度策略下的可调度比率,与已有的混合多关键系统调度策略AMC-arb-x、AMC-max-x进行比较。结果表明,提出的两个调度策略在一定程度上能够实现调度低关键级任务的积极调度,可以通过改变弱约束模式参数调整任务的服务水平。 相似文献
8.
针对现实生产制造系统中存在的时间参数模糊化问题,采用梯形模糊数表征时间参数,给出一种具有模糊交货期和模糊加工时间,以最小化提前/拖期惩罚、制造跨度以及加工费用为目标的多目标差异作业单机批调度问题模型.在对该问题进行求解方面,针对基本粒子群算法容易陷入局部最优的问题,引入混沌局部搜索策略,给出了一种基于混沌优化技术的混合粒子群算法.仿真实验验证了所提出算法的可行性和有效性. 相似文献
9.
常用的实时生产调度的在线算法由于只利用当前已到达的工件信息,导致调度性能不够理想。针对复杂度较高的平行机调度问题,通过对在线算法OMPR(单机可中断松弛)的改进,设计了一种具体的预测调度算法PPSA(平行机预测调度算法)。预测调度算法合理地把预知信息与已知信息结合起来进行决策,使调度解的性能得到进一步提高。仿真分析显示,该算法的性能明显优于在线算法OMPR,表明预测调度算法是一种计算简单、性能优良的实时调度算法。 相似文献
10.
约束规范是弱硬实时系统研究的基础。从弱硬实时系统的定义出发,提出了一个新的约束规范,它能够有效实现平滑调度。给出并证明了弱硬实时系统约束规范严格性比较的一个重要定理。业已证明,该约束规范具有良好的性能和较好的适用范围。 相似文献
11.
We investigate the problem of scheduling a set of jobs with arbitrary sizes and unequal weights on a set of parallel batch machines with non-identical capacities. The objective is to minimize the makespan of the accepted jobs and the total rejection penalty of the rejected jobs, simultaneously. To address the studied problem, a Pareto-based ant colony optimization algorithm with the first job selection probability (FPACO) is proposed. A weak-restriction selection strategy is proposed to obtain the desirability of candidate jobs. Two objective-oriented heuristic information and pheromone matrices are designed, respectively, to record the experience in different search dimensions. Moreover, a local optimization algorithm is incorporated to improve the solution quality. Finally, the proposed algorithm is compared with four existing algorithms through extensive simulation experiments. The experimental results indicate that the proposed algorithm outperforms all of the compared algorithms within a reasonable time. 相似文献
12.
We study the problem of scheduling on parallel batch processing machines with different capacities under a fuzzy environment to minimize the makespan. The jobs have non-identical sizes and fuzzy processing times. After constructing a mathematical model of the problem, we propose a fuzzy ant colony optimization (FACO) algorithm. Based on the machine capacity constraint, two candidate job lists are adopted to select the jobs for building the batches. Moreover, based on the unoccupied space of the solution, heuristic information is designed for each candidate list to guide the ants. In addition, a fuzzy local optimization algorithm is incorporated to improve the solution quality. Finally, the proposed algorithm is compared with several state-of-the-art algorithms through extensive simulated experiments and statistical tests. The comparative results indicate that the proposed algorithm can find better solutions within reasonable time than all the other compared algorithms. 相似文献
13.
In this paper, a production–distribution scheduling problem with non-identical batch machines and multiple vehicles is considered. In the production stage, n jobs are grouped into batches, which are processed on m parallel non-identical batch machines. In the distribution stage, there are multiple vehicles with identical capacities to deliver jobs to customers after the jobs are processed. The objective is to minimize the total weighted tardiness of the jobs. Considering the NP-hardness of the studied problem, an algorithm based on ant colony optimization is presented. A new local optimization strategy called LOC is proposed to improve the local exploitation ability of the algorithm and further search the neighborhood solution to improve the quality of the solution. Moreover, two interval candidate lists are proposed to reduce the search for the feasible solution space and improve the search speed. Furthermore, three objective-oriented heuristics are developed to accelerate the convergence of the algorithm. To verify the performance of the proposed algorithm, extensive experiments are carried out. The experimental results demonstrate that the proposed algorithm can provide better solutions than the state-of-the-art algorithms within a reasonable time. 相似文献
15.
This paper investigates the scheduling problem of parallel identical batch processing machines in which each machine can process a group of jobs simultaneously as a batch. Each job is characterized by its size and processing time. The processing time of a batch is given by the longest processing time among all jobs in the batch. Based on developing heuristic approaches, we proposed a hybrid genetic heuristic (HGH) to minimize makespan objective. To verify the performance of our algorithm, comparisons are made through using a simulated annealing (SA) approach addressed in the literature as a comparator algorithm. Computational experiments reveal that affording the knowledge of problem through using heuristic procedures, gives HGH the ability of finding optimal or near optimal solutions in a reasonable time. 相似文献
16.
We study the online batch scheduling problem on parallel machines with delivery times. Online algorithms are designed on m parallel batch machines to minimize the time by which all jobs have been delivered. When all jobs have identical processing times, we provide the optimal online algorithms for both bounded and unbounded versions of this problem. For the general case of processing time on unbounded batch machines, an online algorithm with a competitive ratio of 2 is given when the number of machines m=2 or m=3, respectively. When m≥4, we present an online algorithm with a competitive ratio of 1.5+ o(1). 相似文献
17.
考虑两台同构并行机上在线批调度问题.每个批具有不确定的到达时间,一旦机器可以利用,要在当前可以利用的批中选择出合适的批,并将其中的工件调度到机器上,且工件在加工过程中不允许中断.目标函数是使调度的最大完成时间最小.给出了一个批在线调度RBLPT算法,即选择当前批中加工时间之和最大的批按LPT 规则调度.另外,利用反证法,对算法的最坏情况进行了分析. 相似文献
18.
A model for scheduling grouped jobs on identical parallel machines is addressed in this paper. The model assumes that a set-up time is incurred when a machine changes from processing one type of component to a different type of component, and the objective is to minimize the total earliness-tardiness penalties. In this paper, the algorithm of soft computing, which is a fuzzy logic embedded Genetic Algorithm is developed to solve the problem. The efficiency of this approach is tested on several groups of random problems and shows that the soft computing algorithm has potential for practical applications in larger scale production systems. 相似文献
19.
分析并行机Job-Shop调度问题的特点并建立其约束满足优化模型,结合约束满足与变邻域搜索技术设计了一个求解该问题的混合优化算法。该算法采用变量排序方法和值排序方法选择变量并赋值,利用回溯和约束传播消解资源冲突,生成初始可行调度,然后应用局部搜索技术增强收敛性,并通过结合问题特点设计的邻域结构的多样性提高求解质量。数据实验表明,提出的算法与其他两种算法相比,具有一定的可行性和有效性。 相似文献
|