首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 96 毫秒
1.
Y对Mg-8Li-3Al合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用真空感应熔炼技术制备了Mg-8Li-3Al-xY(x=0.5,1.0,3.0)合金。研究稀土Y对Mg-8Li-3Al合金组织和性能的影响。结果表明:在Mg-8Li-3Al合金中加入稀土Y,α(Mg)相被明显细化和球化,合金中生成了Al2Y相,添加w(Y)=0.5%-1%后,合金强度得到提高。  相似文献   

2.
采用锂盐熔剂保护熔铸了Mg-8Li-4Zn-xY合金铸锭,并通过正挤压制成1mm的薄板。通过光学显微镜、扫描电镜、XRD分析及合金硬度测试,探讨合金的组织与力学性能。结果表明:Mg-8Li-4Zn-xY合金基体为β-Li(bcc)和α-Mg(hcp)相,析出强化相颗粒和化合物为Mg2Zn11,Mg72.05Zn27.95,MgZn,Mg2Y,MgY及未知相。随Y含量的增加,铸态基体组织得到细化,析出相数量增加。1mm正挤压变形态薄板材基体组织大小、形貌和β-Li相内弥散析出的强化相颗粒数量随着Y含量的提高没有明显变化,但α-Mg相由β-Li相包裹着被拉长并得到一定程度的细化,呈平行于挤压方向的条带状。β-Li相在协调塑性变形的同时发生了动态再结晶,晶界均匀分布着强化相颗粒。无论是铸态还是挤压后1mm的Mg-8Li-4Zn-xY合金薄板,随着Y含量的增加合金得到不同程度的强化,硬度均得到不同程度的提高。  相似文献   

3.
采用常规熔炼工艺制备Mg-9Li-5Gd-1Zr合金,考察了合金元素、均匀化热处理及ECAP挤压对Mg-9Li双相合金组织转变与力学性能的影响.结果表明,合金元素Gd和Zr能显著细化Mg-9Li双相合金中的α-Mg相,使其成为细小的条状,并均匀分布于基体中;与形成的具有取向分布的针状Mg3Gd对铸态合金起主要强化作用.均匀化热处理使β-Li基体晶粒明显长大;β-Li基体内的针状Mg3Gd相发生部分溶解、数量急剧减少;条状α-Mg相沿晶界偏聚长大,形成块状;合金强度较铸态略有下降,伸长率显著提高.ECAP一道次挤压在细化基体组织,改善组织均匀性的同时,导致均匀化处理合金中条状α-Mg相和针状Mg3Gd相破碎细化,诱导回溶的Mg3Gd相沿流变方向再次析出,合金较均匀化处理的强度、塑性均有所下降.  相似文献   

4.
挤压变形态Mg-5Li-3Al-2Zn-xY合金的显微组织和力学性能   总被引:1,自引:0,他引:1  
利用OM,XRD,SEM等方法研究Mg-5Li-3Al-2Zn-xY合金经过挤压后的显微组织和力学性能。结果表明:合金在挤压过程中发生了动态再结晶,出现了大量等轴晶,晶粒明显细化;合金中AlLi相被挤碎,并呈现出沿着挤压方向分布;当Y含量增加到2.0%(质量分数)后,AlLi相消失;挤压后合金的抗拉强度最高为326.3MPa。细晶强化和第二相强化是提高合金抗拉强度的2个主要因素,Al2Y含量,尺寸及分布决定着第二相强化作用的强弱。  相似文献   

5.
利用光学显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)等手段系统研究了铸态、固溶处理态和挤压态Mg-8Li-4Al-0.3Y(质量分数,%)合金的微观组织,测试了其室温力学性能。实验结果表明:铸态实验合金主要由α-Mg、β-Li、Al2Y和AlLi相以及MgAlLi_2相组成;固溶处理后合金中在相界处分布的MgAlLi_2化合物相消失,大量AlLi相发生分解并固溶于合金基体中,仅剩下部分尺寸较大的AlLi相。在挤压过程中合金发生动态再结晶,显微组织明显细化,组织更加均匀。固溶处理后合金基体硬度明显高于铸态合金;与铸态相比,挤压态合金的综合力学性能得到大幅提升,其抗拉强度和延伸率分别达到208 MPa和25.1%。  相似文献   

6.
采用锂盐熔剂保护熔铸Mg-8Li-4Zn-xGd(x=1,3,5)合金铸锭,研究钆含量对铸态合金组织和力学性能的影响。结果表明:Mg-8Li-4Zn-xGd合金基体由α-Mg(HCP)和β-Li(BCC)双相构成。随着钆含量的增加,Mg5Gd共晶相和Zn12Gd化合物相逐渐连成网状,将基体α+β双相隔离成20~40μm的等轴状或类似于铸铁中的共晶团状,可有效细化α-Mg相和连续的β-Li相;组织中大颗粒Mg2Zn11相弥散分布在β-Li相内,Mg51Zn20相分布在α-Mg晶界处;锌元素还可以在β-Li相中析出细小弥散分布的MgZn相,其数量随钆含量的增加而增加,可直接弥散强化β-Li相。此外,锌和钆对合金硬度的影响较大,随着钆含量的增加,合金的抗拉强度提高,但伸长率降低。  相似文献   

7.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}10 1 0织构,而bccβ-Li相中则形成{110}101织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

8.
用真空熔炼、真空热处理方法研究了超轻Mg-7.28Li-8.02Y合金的显微组织和力学性能,以及热处理工艺对该合金显微组织和力学性能的影响规律.结果表明,铸态Mg-7.28Li-8.02Y合金主要由β(Li)相基体和α(Mg)相以及沿晶分布呈网状结构的γ(Mg24Y5)相组成.对铸态Mg-7.28Li-8.02Y做固溶热处理后发现,随着淬火温度由300 ℃升高至500 ℃,Mg及γ(Mg24Y5)相在β相中的固溶程度增加,合金淬火硬度增加,γ(Mg24Y5)相呈圆球状均匀分布,其共同作用使合金抗拉强度大幅度提高;但150 ℃时效后,一方面有晶粒长大,另一方面长时间时效使Mg在β相中固溶度降低,α相沿β相晶界析出,导致合金硬度、强度及塑性有所下降.  相似文献   

9.
定量研究了大挤压比(81:1)条件下Mg-6xZn-xY合金的微观组织和力学性能。结果表明:随着Zn、Y含量的增加,准晶相含量逐渐增加,α-Mg基体平均晶粒尺寸先减小后增大,Mg-6Zn-1Y合金中的α-Mg平均晶粒尺寸最小为2.9μm,且尺寸分布最均匀,其标准差也达到最小,为0.77μm。随着Zn、Y含量的增加,Mg-Zn-Y合金的屈服强度和抗拉强度逐渐增大,延伸率逐渐降低。相比于α-Mg基体晶粒细化,细小准晶相含量的增加对提高Mg-6xZn-xY合金强度的作用更明显。  相似文献   

10.
本文研究了La/Ce混合稀土对Mg-9Li-3Al-xRE(x=0、0.5、1、1.5、2 w.%)合金微观组织和力学性能的影响。在加入混合稀土的铸态合金中,形成了Al4RE相,并且Mg17Al12相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al4RE相挤压破碎至1-3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的机械性能,最大抗拉强度和延伸率分别为228.3Mpa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

11.
The influence of Y on microstructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy was investigated. The results show that the phase compositions of Mg-5Li-3Al-2Zn consist of α-Mg and AlLi phases. Adding Y to the alloy results in the formation of Al2Y compound and facilitates grain refinement. The addition of 0.8 wt.% Y produces the smallest grain size. The tensile tests performed at room temperature show that the additions of Y can improve the mechanical properties of the alloy; the tensile strength and ductility reach peak values when the Y additions are 0.8 wt.% and 1.2 wt.%, respectively. The mechanisms of improvement are related to grain refinement and compound strengthening effects.  相似文献   

12.
The extruded Mg-6Li-4Zn-xMn (x = 0, 0.4, 0.8, 1.2 wt%) alloys were prepared, and the microstructure of the test alloys was investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. The corrosion properties were determined by electrochemical measurements and immersion measurements in 3.5% NaCl solution. The results indicate that the extruded Mg-6Li-4Zn-xMn alloys are mainly composed of α-Mg phase, β-Li phase, Mn precipitates and some intermetallic compounds (MgLi2Zn). With the addition of Mn, stable corrosion products were formed on the surface of the test alloy, which can effectively inhibit further corrosion progress and improve the corrosion resistance. Mg-6Li-4Zn-1.2Mn alloy exhibits the best corrosion resistance, attributed to grain refinement, the improvement of the stability of corrosion product film and uniform distribution of fine second phases.  相似文献   

13.
Mg-5.6Li-3.37Al-1.68Zn-1.14Ce alloy was prepared using vacuum induction melting furnace. The microstructure and phases compostion of as-cast and as-extruded alloys were investigated by optical microscopy, energy dispersive X-ray spectroscopy, scanning electron mocroscopy and X-ray diffraction. The mechanical properties of these alloys were measured with tensile tester. The results indicate that the as-cast alloy is composed of a(Mg) phase and rod-like Al2Ce compound. Al2Ce has the refining effect on the microstructure of alloy. During the extrusion at 523 K, dynamic recrystallization happens in the alloy. The dynamic recrystallization refines the grain size of alloy obviously. The phases are refined clearly after extrusion deformation, and the strength and ductility of the alloy are increased accordingly.  相似文献   

14.
0.5 wt.% Ce and Y were added into the alloy of Mg-8Li-2Zn, respectively. The different behaviors of Ce and Y in the alloy were investigated. Results show that, Ce and Y can both refine the α phase, and the α phase was spheroidized. Two kinds of compounds exist in the alloy when the alloy contains Ce/Y. They are Zn2Ce and Mg6Y, respectively. Zn2Ce mainly distributes at the grain boundary of the alloy with the shape of blocky. Mg6Y mainly distributes in the inner place of grains with the shape of granular. The size of Zn2Ce is much larger than that of Mg6Y. Y and Ce are both favorable for the improvement of strength, and the effect of Y is more obvious. The addition of Ce makes the elongation of the alloy become poor, while the addition of Y can increase the elongation of the alloy.  相似文献   

15.
以Mg-9.5Li-2.56Al-2.58Zn合金为对象,研究其组织形貌及相组成.并利用UTM5305电子万能试验机对其进行了不同应变速率以及不同变形量的室温压缩实验,获得真应力-应变曲线,构建合金的室温变形本构方程.研究压缩前后合金的微观组织和压缩性能演变规律.结果 表明,Mg-9.5Li-2.56Al-2.58Zn...  相似文献   

16.
The evolution of the microstructure and mechanical properties of alloy system with nominally composition Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd (x = 0, 1.2, 2.4, 3.6, 4.8, 6) is evaluated based on computational phase diagram and corresponding experimental studies. The results show that grains are significantly refined with the increase of Gd content. The main phases of as-cast alloys are α-Mg, β-Li, AgLi2Mg, and Mg3Gd. With the increase of Gd content, the amounts of Mg3Gd phase and β-Li phase have been increased. When the Gd content exceeds 3.6 wt%, Mg3Gd phase precipitates in a form of the network at the grain boundaries. The precipitation of β-Li can be attributed to the competitive dissolution of Zn, Gd, and Li in Mg. Meanwhile, γ″ is formed after the addition of Gd, which grows and transforms into γ′ with the increase of Gd content. In solidification process, stacking faults are formed by solid transformation of partial α-Mg and Mg3Gd. Eventually, with the synergistic effect of Mg3Gd, β-Li, and γ″ (or γ′), as the Gd content increasing, the tensile strength of the alloy first increases, then decreases, and the elongation decreases. When the content of Gd is 4.8 wt%, the ultimate tensile strength and yield strength reach the maximum values of 227 MPa and 139 MPa, and the elongation is 18.1%, respectively.  相似文献   

17.
研究了固溶处理对铸态Mg-4Al-2Si(AS42)合金组织和性能的影响.结果表明,铸态与热处理态合金均由α-Mg基体、β-Mg17Al12相和Mg2Si相3部分组成.固溶处理使合金中的β-Mg17Al12相发生部分溶解,汉字状Mg2Si相颗粒出现球状化,合金的力学性能有较大幅度的提高.铸态与热处理态合金的断裂形式均为准解理脆性断裂.  相似文献   

18.
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号