首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用UTM5000电子万能拉伸试验机,在变形温度573~648 K和应变速率0.001~0.1 s~(-1)条件下对2060-T8铝锂合金进行等温恒应变速率拉伸试验,得到其在变形过程中的真应力-真应变曲线,建立了基于应变补偿和修正项的温热变形本构方程。通过扫描电子显微镜(SEM)分析拉伸断口,对2060-T8铝锂合金的温热变形行为进行研究。结果表明:2060-T8铝锂合金对变形温度和应变速率具有较高的敏感性,流变应力曲线呈现出应变硬化和流变软化的特征,随着变形温度的升高和应变速率的降低,稳态流变特征逐渐消失,其在温热变形条件下的断裂形式为韧性断裂。修正的本构模型与实验值吻合度较高,可以为2060-T8铝锂合金温热变形的有限元模拟提供前提条件。  相似文献   

2.
利用Sans CMT4104型电子万能实验机进行等温恒应变速率热拉伸试验,研究了2060-T8E30铝锂合金在变形温度425~500 ℃、应变速率0.001~0.1 s-1条件下的热变形行为。结果表明:2060-T8E30铝锂合金在热变形过程中,随着温度的升高和应变速率的降低,其峰值应力降低。合金的平均变形激活能为240.502 kJ/mol,平均应变速率敏感指数为0.28。基于热拉伸试验的真应力-真应变曲线,建立了具有应变补偿的Arrhenius本构方程,模型的预测值与实验值平均相对误差5.89%,模型的精确度较好。  相似文献   

3.
通过等温热压缩实验,综合研究1460铝锂合金在不同应变速率(10-3~10 s-1)和不同温度(573~773 K)下的热变形行为及其组织演变规律。通过考虑压板和样品界面的摩擦力和形变热导致的温度变化,对流变应力曲线进行校正。结合变形行为中的应变、应变速率和温度的影响,可以通过正弦关系中的Z参数来描述其变形行为,并根据动态回复、动态再结晶、T1相的溶解对峰值流变应力的影响,建立1460铝锂合金的本构方程。在所有应变速率和温度范围内,本构方程有效性验证表明,改进后的本构方程是可行有效的,其线性相关系数和相对误差分别为0.9909和6.72%。  相似文献   

4.
进行了2060-T8铝锂合金不同温度、脉冲电流密度、占空比和脉冲频率的电辅助单向拉伸实验。研究表明:在实验研究的范围内,随着电流密度的增加,材料的变形抗力和断裂延伸率都会下降,占空比和脉冲频率对纯电致塑性没有影响。基于Johnson-Cook模型,引入电辅助特征,建立了耦合温度和脉冲电流参数的材料本构方程。利用该本构方程计算的结果与实验吻合的较好,说明所建立的材料本构方程能够准确的预测2060-T8铝锂合金在电辅助条件下的流动应力变化趋势。  相似文献   

5.
利用等温热压缩实验,研究了TG700C合金变形温度为1050~1250℃、应变速率为1~20 s-1、变形量为60%变形条件下的热变形及动态再结晶行为。对材料高应变速率下的变形热效应进行了温升修正,获得了该合金的流变曲线和热变形本构方程,热变形过程的表观激活能为Q=624.762 k J/mol。该合金经过温升修正后的流变曲线呈现稳态的流变应力,不同变形温度和应变速率下合金的流变应力存在差异。合金的动态再结晶形核方式为应变诱导晶界迁移形核,在高温低应变速率下,动态再结晶形核容易发生,再结晶的比例随着温度的升高和应变速率的降低而提高。  相似文献   

6.
采用等温热压缩实验研究DP工艺Inconel 718合金在变形温度为900~1060℃,应变速率为0.001~0.5 s~(-1)条件下的高温流变行为,分析摩擦因数和绝热温升对真应力-真应变曲线的影响,并对摩擦引起的流变应力误差进行了修正,建立了基于应变量的应变本构模型。结果表明:随着应变速率的增大和变形温度的降低,摩擦因数的影响趋于明显,变形激活能和材料常数是应变量的函数。对引入应变量参数建立的用于预测工艺处理的Inconel718合金不同变形量时的流变应力本构模型进行误差分析,其实验值与预测值的相关性系数为0.998,平均相对误差绝对值为3.87%,能够用于准确预测不同变形量时合金的流变应力值。  相似文献   

7.
本文对Al-9.39Zn-1.92Mg-1.98Cu合金做等温热模拟压缩实验,变形温度为300 ℃~460 ℃,应变速率为0.001 s-1~10 s-1,变形量为60%。结果表明:变形时,合金的流变应力力随着变形温度的降低或应变速率的增大而增大。由于热变形时存在摩擦影响,对流变应力曲线进行修正.结果发现摩擦修正后的应力值低于实验值,摩擦力对流变应力的影响程度随着温度的降低和应变速率的增大而增大。基于经典的Arrhenius方程,考虑应变量对材料常数(α,n,Q和A)的影响,构建该合金在热变形时的本构方程。评价改进的本构方程预测能力发现流变应力值与实测值吻合度较高,其相关度高达93.5%。  相似文献   

8.
利用ETM105D型拉伸实验机对Al-Cu-Mg-Sc合金进行单轴热拉伸实验。研究了变形温度为250~450℃和应变速率为10~(-4)~10~(-1)s~(-1)下Al-Cu-Mg-Sc合金的高温流变变形行为。采用Zener-Hollomon参数法构建该合金的高温流变本构关系。结果表明:该合金的真应力-真应变曲线不是典型的动态回复曲线,在很小的应变下达到峰值应力,之后流动应力先缓慢下降后明显下降,直至断裂,其中由于软化现象存在一个应力减少量。通过线性拟合计算Al-Cu-Mg-Sc合金的结构因子A=3.085×10~(18)s~(-1),应力指数n=4.75325及变形激活能Q=257.4 k J/mol,获得其在高温拉伸条件下用Z参数表达的流变应力本构方程。  相似文献   

9.
采用DDL50高温电子万能试验机对Ti_3Al基合金进行等温恒应变速率拉伸试验,研究了该合金在热变形温度900~1020℃,应变速率2×10~(-4)~2×10~(-2)s~(-1)范围内的高温热变形行为。结果表明:Ti_3Al基合金的流变应力在应变速率一定时,随温度的升高而减小,在温度一定时,随应变速率的升高而增大,流变应力在达到峰值后开始逐渐降低,呈软化现象;应变速率越高,Ti_3Al基合金的软化越明显。依据高温拉伸试验得到的真应力-真应变曲线关系,计算得出了Ti_3Al基合金热变形激活能为472.7992 k J·mol~(-1)。建立了Ti_3Al基合金热变形的双曲正弦形式的本构方程和Zener-Hollomon参数方程。  相似文献   

10.
采用Gleeble-3500热模拟实验机对挤压态HMn64-8-5-1.5锰黄铜合金在不同变形温度(873~1073 K)及应变速率(0.01~10s-1)条件下进行等温热压缩实验,获得其真应力-真应变曲线.基于实验数据构建考虑应变补偿的Arrhenius模型并检验其预测精度,结果表明由于该模型未考虑变形条件对材料参数的影响,导致了预测精度不高.因此,提出一种考虑变形条件对材料参数影响的修正型本构模型,经验证,所建立修正的Arrhenius本构模型能很好地预测HMn64-8-5-1.5合金的高温流变应力.此外,基于修正模型可获得不同变形条件下合金的变形激活能,其受到应变、应变速率和变形温度的影响.  相似文献   

11.
AZ80合金高温变形行为及加工图   总被引:6,自引:0,他引:6  
为实现AZ80合金塑性成形的数值模拟和制定其合理的热加工工艺,利用热模拟机对AZ80合金进行不同变形温度和应变速率的高温压缩变形行为研究.结果表明:AZ80合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的AZ80合金高温变形的本构模型较好地表征其高温流变特性,模型计算精度高;同时,利用建立的AZ80合金的DMM加工图分析其变形机制和失稳机制,从提高零件力学性能角度考虑,可以优先选择变形温度为300~350 ℃、应变速率为0.001~0.01 s-1的工艺参数.  相似文献   

12.
采用高温等温压缩试验并利用修正后的流变曲线,研究了2099 Al-Li合金在变形温度为300~500℃,应变速率为0.001~10 s-1,变形量(真应变)为0.7条件下的流变行为。结果表明:可用包含Z参数的双曲正弦形式来表征变形温度和应变速率对2099 Al-Li合金热变形行为的影响;将应变作为影响因素,求解了不同应变量下的材料常数,并构建了考虑应变的本构模型;统计分析结果表明,除了在变形温度为300℃,应变速率为10 s-1之外,该模型能够很好的预测2099 Al-Li合金高温流变行为。  相似文献   

13.
As main light-weight material, aluminum alloy sheets have been widely applied to produce auto body panels. In order to predict the formability and springback of aluminum alloy sheets, a precise constitutive model is a necessity. In this article, a series of warm tensile tests were conducted on Gleeble-1500D thermal mechanical simulator for 6111-T4 aluminum alloy sheets. The corresponding strain rate ranged from 0.015 to 1.5 s?1, and the temperature ranged from 25 to 350 °C. The relationship between the temperature, the strain rate, and the flow stress were discussed. A constitutive model based on the updated Fields-Backofen equation was established to describe the flow behavior of 6111-T4 aluminum alloy during the warm tensile tests. Subsequently, the average absolute relative error (AARE) was introduced to verify the predictability of the constitutive model. The value of AARE at the uniform plastic deformation stage was calculated to be 1.677%, which demonstrates that the predicted flow stress values were in accordance with the experimental ones. The constitutive model was validated by the fact that the simulated results of the warm tensile tests coincided with the experimental ones.  相似文献   

14.
利用电子万能试验机和分离式Hopkinson压杆得到Ti_2AlNb合金准静态拉伸曲线及高应变率下动态压缩应力-应变曲线,观察分析变形后试样的微观组织,研究其高应变率下的流动应力特征。结果表明:在应变率2500~7500 s-1范围内,Ti_2AlNb合金的流动应力对应变率有较强的敏感性,且具有应变强化、应变率增强及增塑效应;应变率为5500、6500、7500s-1的3组试样中观察到了与加载方向约成45°的绝热剪切带。改进Johnson-Cook本构模型,拟合实验数据得到Ti_2AlNb合金室温下的动态塑性本构关系,与实验对比,改进后的模型能够较好地描述Ti_2AlNb合金在高应变率下的流动应力。  相似文献   

15.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

16.
5A90铝锂合金热态下本构关系研究   总被引:5,自引:0,他引:5  
进行了5A90铝锂合金在200℃~450℃温度范围和0.3×10-3s-1~0.2×10-1s-1应变速率范围内的单向拉伸试验。结果表明,5A90铝锂合金的流动应力随变形温度的升高而减小,随应变速率的增大而增大;而其最大延伸率的变化趋势与流动应力的相反;最佳的成形温度范围在400℃左右。通过试验数据的计算及拟合,得到了任意温度下5A90铝锂合金应力-应变-应变速率关系的本构方程。  相似文献   

17.
采用Gleeble-3500热模拟机对GH690-RE合金进行高温压缩变形试验,在温度为950~1200℃,应变速率为0.001~2.000s-1的变形条件下测定并分析其应力-应变曲线。结果表明,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力特征可用经典的双曲正弦模型描述。以应力-应变曲线为基础,采用线性回归法确定了GH690-RE合金的常数,建立了GH690-RE合金的高温本构关系方程。  相似文献   

18.
在温度1323-1473 K,应变速率0.001-1 s-1的范围内研究了Ti-43Al-4Nb-1.4W-0.6B 合金的热压缩变形行为,其真应力-真应变曲线表明合金在变形过程出现了动态软化行为。依据经过摩擦和温度修正后流变应力的曲线,获得了该合金的本构方程,其中Zener-Holloman指数方程描述了温度和应变速率对变形行为的影响,以此构建五次多项式组来描述应变对材料参数的影响,其预测结果与实验结果相符。同时,建立了该合金的热加工图,并据此加工图预测出该合金合适的加工参数为1343 K和0.02 s-1,且成功地完成了在工业生产条件下对圆柱形试样的锻造。  相似文献   

19.
TC11钛合金热变形本构方程的建立   总被引:1,自引:0,他引:1  
利用Gleeble-1500D热模拟试验机,在变形温度为960~1050℃,应变速率为0.01~10s-1范围内对TC11钛合金进行等温恒应变速率压缩实验。通过真应力-真应变曲线,分析了变形温度和应变速率对流变应力的影响规律,并在Arrhenius双曲正弦型方程的基础上建立了适用于TC11钛合金热变形的本构方程。误差分析表明所建立的本构方程与实验值吻合较好,为制定TC11钛合金锻造工艺提供了理论依据。  相似文献   

20.
在Gleeble-1500D热模拟机上采用等温压缩实验研究Zn-8Cu-0.3Ti锌合金的高温流变行为,获得锌合金在变形温度为230~380℃、应变速率为0.01~10 s-1和变形程度为50%条件下的真应力—应变曲线,根据动态材料模型(DMM)建立锌合金的热加工图。结果表明:Zn-8Cu-0.3Ti锌合金在实验条件下具有正的应变速率敏感性,流变应力随着应变速率的增大而增大,随着变形温度的升高而减小,该合金的流变应力行为可用Arrhenius方程来描述。在本研究条件下,Zn-8Cu-0.3Ti锌合金在热变形时存在一个失稳区,即应变速率0.2 s-1以上的区域;在应变速率小于0.001 s-1和340~370℃温度范围内,最大功率耗散系数为0.53,该安全区域内合金的变形机制为动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号