首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
针对马钢1720线冷轧废水中的乳化液废水(包括含油废水)、电解脱脂机组废水、酸性废水存在现有污水处理设施无法满足GB 13456—2012排放标准要求的问题,设计了乳化液废水、电解脱脂机组废水、酸性废水预处理工艺,使其废水经过预处理后满足进入生化系统的要求。  相似文献   

2.
很多有色金属矿山在开发过程中,会产生大量含铜酸性废水。由于酸性废水含铜浓度差异性较大,采取的处理工艺也会有所不同。针对某矿山含铜酸性废水进行了大量的工业试验研究,结果表明,较高浓度含铜酸性废水可采取硫化法回收铜金属,再经环保中和处理后循环利用,可大量减少中和渣产生量,降低环保处理成本,有显著的经济、环保效益。同时,为了防范极端气候下的环境风险,该矿山还建设了足够处理能力的备用石灰中和处理系统以及应急液碱(片碱)加药系统,以供同类矿山参考、借鉴。  相似文献   

3.
很多有色金属矿山在开发过程中,会产生大量含铜酸性废水。由于酸性废水含铜浓度差异性较大,采取的处理工艺也会有所不同。本文针对某矿山含铜酸性废水进行了大量的工业试验研究,结果表明:较高浓度含铜酸性废水可采取硫化法回收铜金属,再经环保中和处理后循环利用,可大量减少中和渣产生量,降低环保处理成本,有显著的经济、环保效益。同时,为了防范极端气候下的环境风险,该矿山还建设了足够处理能力的备用石灰中和处理系统以及应急液碱(片碱)加药系统,以供同类矿山参考、借鉴。  相似文献   

4.
酸性矿山废水的处理对环境可持续性至关重要。目前,利用硫酸盐还原菌修复酸性矿山废水因高效经济、环境友好、绿色安全等优势,备受国内外研究学者的关注。因此,本文通过对有关硫酸盐还原菌处理酸性矿山废水文献进行梳理,综述了酸性矿山废水的来源及危害,总结了硫酸盐还原菌去除酸性矿山废水中高硫酸盐和金属的机理,详细介绍了影响硫酸盐还原菌处理酸性矿山废水的主要因素,阐述了基于硫酸盐还原的生物反应器系统。最后,对硫酸盐还原菌处理酸性矿山废水的研究进行展望并提出建议。  相似文献   

5.
刘伟霞 《山西煤炭》2011,31(11):73-74,78
酸性煤泥水抑制自动添加药剂控制系统,进行了采样、加药桶、pH传感器、加药执行机构、控制器、人机界面的硬件选型和设计,形成了完整的酸性煤泥水自动加药控制硬件系统,能为后续药剂自动控制系统的软件开发提供基础平台。  相似文献   

6.
针对铜陵新桥硫铁矿酸性废水的高浓度泥浆法处理工艺,采用PLC、变频器、Profibus总线构建了自动化控制系统,其中对核心环节石灰乳和絮凝剂添加量的控制采用了科恩-库恩算法。实践证明,该控制系统可靠性高,性能优越,具有推广价值。  相似文献   

7.
鄢榕青 《金属矿山》2009,39(8):130-131
德兴铜矿为亚洲最大的露天铜矿山,采区边坡、采矿作业面及废石场等产生的酸性废水污染源点多面广,酸性水水质水量变化大,因而酸性水处理系统调控难度大。主要阐述德兴铜矿通过优化矿山酸性水处理调控系统,采取源头削减、过程控制、末端治理的方法,达到控制和减少酸性废水产生和排放,提高酸性水的处理能力。  相似文献   

8.
矿山酸性含铜废水的处理研究   总被引:8,自引:0,他引:8  
简述了矿山酸性含铜废水的来源、特点和危害及矿山酸性含铜废水的处理方法。在此基础上,选择离子交换法作为处理工艺,设计了实验室用离子交换处理装置,研究了过滤速度、pH值、原水Cu^2+浓度等因素对离子交换法处理酸性含铜废水效果的影响,确定了实验室条件下的合理工艺条件。并对某铜矿实际含铜废水进行了处理研究,取得了理想的处理效果,处理后废水可以达标排放。  相似文献   

9.
陈隆玉 《铀矿冶》2006,25(2):102-102
Sheoran A.S.等人在《Minerals Engineering》2006年19卷第2期上撰文,对湿地法除去酸性矿山废水中重金属的机理作了评述。酸性矿山废水(AMD)是世界采矿业面临的最重要的环境问题之一。来自金属硫化矿物渗出的水、矿物处理厂排出的废水以及尾矿坝的渗漏水都呈酸性,而这种酸性水使金属以其可溶的形式被迁移。用于处理酸性矿山废水的常规处理技术,其生产和基建费用都很高。达到同样处理效果的方法之一就是使用被动处理系统。这种系统的成本低,经处理后的水无污染,可以担起对酸性矿山废水进行处理的责任。湿地处理系统包括在被动处理系统中…  相似文献   

10.
吴义千  占幼鸿 《有色金属》2005,57(4):101-105,109
总结国内外矿山酸性废水源头控制技术的原理和要点,介绍德兴铜矿杨桃坞、祝家废石场和露天采场防止和减少酸性废水的清污分流工程。采用拦、截、排、泄等措施,德兴铜矿每年可控制和减少向大坞河排放酸性废水250~350万t,改善大坞河水质效果显著,同时节省了大量处理费用。  相似文献   

11.
矿山酸性废水治理HDS工艺技术研究   总被引:3,自引:0,他引:3  
HDS处理工艺是一种高效底泥循环回流技术,在矿山酸性废水治理中具有提高药剂利用率、提高污泥浓度、改善污泥沉降浓缩特性等优点,在国外矿山酸性废水治理中具有广泛的应用,在国内仅有部分试验研究。通过实验室试验以及结合研究资料对HDS处理工艺在矿山酸性废水的治理过程机理进行了研究,同时对技术研究进展及应用等方面进行了现状分析。  相似文献   

12.
矿山充填的胶凝材料可以选用成本低的造纸污泥灰,高温煅烧后的造纸污泥灰其潜在活性需要激发剂激发才能够显现出来。在分析造纸污泥灰高温煅烧后组分与化学成分的基础上,尝试性的利用不同浓度的NaOH、Na2SO4、NaCl溶液在实验室进行了高温煅烧造纸污泥灰活性激发试验。基于实验结果发现:NaOH激发剂、Na2SO4激发剂与NaCl激发剂对于造纸污泥灰活性都有一定的促进作用,NaOH激发剂、Na2SO4激发剂的激发效果明显,NaCl激发剂效果相对较弱。激发剂溶液浓度与激发效果基呈正相关性,工程应用上,建议选用CaOH及CaSO4的混合物作为激发剂,CaCL2作为早强剂。试验结果为造纸污泥灰在矿山充填应用中提供了理论支持。  相似文献   

13.
沈青峰 《金属矿山》2019,48(3):189-193
采用石灰中和酸性废水的矿山普遍存在氧化钙反应不彻底、污泥沉降性能不理想问题。为了提高氧化钙的利用效率、改善污泥的沉降效果,以某铜矿环保车间的废水为试样,进行了氧化钙直接中和废水工艺条件研究和污泥回流+氧化钙中和废水工艺条件研究。结果表明:①在氧化钙用量为24 g/L、消化时间为20 min、搅拌速度为400 r/min情况下进行氧化钙直接中和试验,反应75 min的料浆pH>6。②在污泥(pH>6)回流比例为40%、氧化钙用量为22.0 g/L情况下进行废水中和,也可将废水的pH调至6以上,且废水中金属离子浓度得到大幅度下降,满足送尾矿库储存的要求。③污泥的回流不仅可以充分利用其中未反应的氧化钙,减少新添氧化钙的用量,还可以改善污泥的沉降性能、提高污泥的固含量,有利于尾矿库回水的澄清。  相似文献   

14.
《Minerals Engineering》2002,15(11):839-846
The aim of this investigation was to assess the potential of activated sludge for the remediation of sulphur-rich wastewaters. A pilot-scale activated sludge plant was acclimatised to a low load of sulphide and operated as a flow-through unit. Additional sludge samples from different full-scale plants were compared with the acclimatised and unacclimatised sludges using batch absorption tests. The effects of sludge source and acclimatisation on the ability of the sludge to biodegrade high loads of sulphide were evaluated. Acclimatisation to low-sulphide concentrations enabled the sludge to degrade subsequent high loads which were toxic to unacclimatised sludge. Acclimatisation was seen to be an effect of selection pressure on the biomass, suggesting that the treatment capability of activated sludge will develop after acclimation, indicating potential for treatment of acid mine drainage (AMD) by a standard wastewater treatment process. Existing options for biological treatment of AMD are described and the potential of activated sludge treatment for AMD discussed in comparison with existing technologies.  相似文献   

15.
针对石灰中和法处理南丹县吉朗铟业有限公司锌冶炼过程中高酸含砷废水,存在污泥量大、污泥处理困难、有价金属流失严重、成本高等缺点,研究采用氧化-控pH中和法处理锌冶炼过程中高酸含砷废水技术.多次试验表明,该工艺简单,技术成熟可靠,具有较好的推广应用的条件.  相似文献   

16.
The possibility of using acid mine drainage (AMD) treatment sludge as a cover component to control AMD generation from mine wastes was investigated through laboratory characterization and kinetic column testing (companion paper). The results showed that mixtures of sludge and waste rock, and sludge and tailings, may be integrated in an AMD prevention and control strategy at Doyon mine site (northwestern Quebec, Canada). In order to further investigate these scenarios in realistic climatic conditions, instrumented field test cells were installed on site to evaluate the performance of the mixtures to control AMD generation from tailings and waste rock under natural field conditions. The main findings from two seasons of monitoring are presented in the paper. The waste rock-sludge mixture placed over waste rock was able to reduce the generation of AMD from the waste rock, therefore confirming lab results, and was able to produce a neutral effluent with low concentrations of dissolved metals. The tailings-sludge mixture placed over tailings, with an evaporation protection layer, maintained a high volumetric water content and reduced sulphide oxidation from the tailings as exhibited by a neutral effluent. Monitoring of the field cells will continue to provide valuable information on the possible sludge valorization options.  相似文献   

17.
周钦  刘显平 《中国矿业》2012,21(Z1):573-574
随着整个社会对环保的重视,合理防治矿山酸性废水污染成了矿山企业的一项重要任务,遂昌金矿的矿山酸性废水经电石渣中和处理后,形成中和渣使尾矿库有效库容日趋减小。而用传统潜水泵取渣效果并不理想,维护成本极高。采用KL120-50型矿用立泵进行取渣,既高能高效,又节约成本,获得了可观的经济和社会效益。  相似文献   

18.
This paper discusses the chemical and physical characteristics of low density sludge (LDS) and its interaction with mine water in a flooded German underground fluorite mine. The highly hydrous nature of the sludge (11.5–17 % solids), its rather low sedimentation rate, and its thixotropic viscosity were confirmed. The interaction of LDS and mine water was tested in the laboratory in batch experiments and modelled with PHREEQC. Mine water quality improved through contact with the LDS sludge: the total alkalinity and pH of the water increased and its iron concentration and total acidity decreased. Storage of sludge in a flooded mine could be a sustainable tool for both the handling of LDS and improvement of mine water quality, even when the LDS represents less than 1 % of the total mine water volume. No polymer flocculants from the LDS treatment plant were found in the discharged mine water.  相似文献   

19.

Molybdenum (Mo) concentrations in mining-impacted water can be orders of magnitude higher than health-based values for drinking water. Mo in oxidized mine waters is predominantly present as the oxyanion molybdate, which is problematic in mine water treatment because it is not removed by conventional alkaline addition treatment and requires separate Mo-specific methods. Mo removal by sorption to ferric precipitates is the typical treatment strategy. We investigated a sustainable alternative for a mine water with low-iron content and high manganese (Mn). We evaluate the potential for Mo removal by sorption onto Mn-rich sludge from a mine water treatment plant that uses lime to remove metals at pH 10. In laboratory sorption batch tests with an initial Mo concentration of 10 mg/L in a sodium chloride solution, over 90% of the Mo was removed onto the sludge at pH 6 and below (up to 34 mg Mo/g Mn). Sorption was sensitive to pH, with sharp decreases in sorption levels from pH 6 to 8. Sorption was also affected by the matrix composition of the mine water samples, apparently due to competitive sorption from other ions in the mine water. Use of site Mn for water treatment provides a more sustainable treatment approach; however, additional knowledge is required to understand the effects of site-specific complexities.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号