首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) was applied to the analysis of human red blood cells (RBCs) using the split-flow technique for interfacing CE to MS. By using a long (approximately125-cm) and narrow (approximately 15-microm-i.d.) capillary, the four major proteins of the RBC, which are hemoglobin (Hb, alpha- and beta-chains, 900 amol/chain), carbonic anhydrase I (CAI, approximately 7 amol/cell), and carbonic anhydrase II (CAII, approximately 0.8 amol/cell), were separated from each other and detected at low-attomole levels in one run and minimal sample preparation. Under these conditions, the detection limits for CAI and CAII in lysed RBCs were approximately 20 and approximately 44 amol, respectively. The approximately 20-amol detection limit of CAI was confirmed by the CE/ESI-MS analysis of three intact RBCs that had been drawn into the capillary under a microscope. A shorter capillary (approximately 55 cm long) provided faster analysis time but did not separate CAII from the beta-chain of hemoglobin, causing the CAII signal to be masked by the background chemical noise generated by the approximately 1,000 x molar excess of the beta-chain. Under this condition, the CAII detection limit increased to approximately 500 amol. From three methods of sample introduction (injection of lysed blood, injection of intact cells under microscope, and injection of intact cells suspended in saline solution), injection of lysed blood provided the optimum sensitivity. It was found that a background electrolyte (BGE) containing 0.1% acetic acid in water worked best for the analysis of intact cells, while a BGE containing 0.1% acetic acid in water + acetonitrile (50/50 by volume) worked best for the analysis of lysed blood.  相似文献   

2.
T T Lee  E S Yeung 《Analytical chemistry》1992,64(23):3045-3051
Intracellular fluid within single human erythrocytes is analyzed by capillary electrophoresis with laser-excited native protein fluorescence. Good signal-to-noise is achieved, allowing even minor components to be quantified. Non-Gaussian distributions were found for total protein, fraction carbonic anhydrase, fraction hemoglobin A0, and an unidentified component. Variations among a group of 29 cells for each quantity are as much as 1 order of magnitude, even though erythrocytes are known to be fairly homogeneous in size distribution. Variations in fraction hemoglobin A0 reflect differences in in vitro oxidation rates to methemoglobin. A positive correlation was observed between carbonic anhydrase and hemoglobin A0 for individual cells. This is consistent with the presence of erythrocytes of different ages within the population, with the older cells being less capable of maintaining enzyme activity and preventing oxidative damage.  相似文献   

3.
Nguyen A  Moini M 《Analytical chemistry》2008,80(18):7169-7173
The separation and detection of the major protein-protein and protein-metal complexes of erythrocytes directly from cell lysate under native conditions has been accomplished for the first time using capillary electrophoresis electrospray ionization-mass spectrometry (CE/ESI-MS). All three major protein-protein and protein-metal complexes in human red blood cells (RBCs) with a concentration dynamic range of approximately 3 orders of magnitude were successfully detected. Intact complexes detected in lysed RBCs included carbonic anhydrase II (CAII-Zn at approximately 0.8 amol/cell) complexed with its zinc cofactor, carbonic anhydrase I (CAI-Zn at approximately 7 amol/cell) complexed with its zinc cofactor, and hemoglobin A (Hb-tetramer at approximately 450 amol/cell)a tetramer formed by two alpha-beta-subunits and four heme groups. The average molecular weights measured for these complexes were consistent with their theoretical values within 0.01% mass accuracy. The use of Polybrene as a self-coating reagent in conjunction with ammonium acetate at pH approximately 7.4, narrow capillary for high separation efficiency, and forward polarity CE to avoid acid production at the tip of the capillary were overriding experimental factors for successful analysis of protein complexes. Diluting the lysed blood sample in ammonium acetate for a minimum of 6 h before injecting the sample into the CE was essential for obtaining the mass accuracy consistent with their theoretical average molecular weights. At physiological pH, the mass spectrum of the electrophoretic peak of Hb-tetramer included a small amount of the monomers and Hb-dimer. The migration time and peak profile of these species were almost identical to that of the tetramer, indicating that they are formed from decomposition of the Hb-tetramer during the ESI process. A separate electrophoretic peak for the Hb-dimer was only detected when the pH of the BGE was lowered from 7.4 to approximately 6.6. Running CE in forward polarity mode was essential for detection of the intact Hb-tetramer as well as CAI-Zn and CAII-Zn complexes. Under forward polarity mode, CE outlet/ESI shared electrode acts as the cathode of the CE circuit and the anode (positive voltage for positive ions) of the ESI circuit, thereby maintaining approximately neutral pH at the CE outlet/ESI electrode. In addition, under forward polarity mode, CAII-Zn and CAI-Zn migrated ahead of Hb-tetramer, avoiding being masked by 562x and 64x, respectively, molar excess of Hb-tetramer.  相似文献   

4.
A method for carrying out 2D gel electrophoresis in a capillary format is presented. In this method, separation in the first dimension is carried out in a 1D capillary, with this system physically isolated from the capillaries that provide the separation in the second dimension. After completion of the first separation, the 1D channel is physically connected to the 2D capillaries, and a second separation is carried out in an orthogonal set of parallel capillaries. The ability of poly(dimethylsiloxane) (PDMS) to support the fabrication of 3D microfluidic systems makes it possible to produce membranes that both enclose the gel used in the first separation in a capillary and provide passages for the proteins to migrate into the array of orthogonal capillaries. The elastomeric nature of PDMS makes it possible to make reversible connections between pieces of PDMS. The feasibility of this system is demonstrated using a protein mixture containing fluorescein-conjugated carbonic anhydrase, fluorescein-conjugated BSA, and Texas Red-conjugated ovalbumin. This work suggests one type of design that might form the basis for a microfabricated device for 2D capillary electrophoresis.  相似文献   

5.
Microfabricated system for parallel single-cell capillary electrophoresis   总被引:4,自引:0,他引:4  
Munce NR  Li J  Herman PR  Lilge L 《Analytical chemistry》2004,76(17):4983-4989
Performing single-cell electrophoresis separations using multiple parallel microchannels offers the possibility of both increasing throughput and eliminating cross-contamination between different separations. The instrumentation for such a system requires spatial and temporal control of both single-cell selection and lysis. To address these problems, a compact platform is presented for single-cell capillary electrophoresis in parallel microchannels that combines optical tweezers for cell selection and electromechanical lysis. Calcein-labeled acute myloid leukemia (AML) cells were selected from an on-chip reservoir and transported by optical tweezers to one of four parallel microfluidic channels. Each channel entrance was manufactured by F2-laser ablation to form a 20- to 10-microm tapered lysis reservoir, creating an injector geometry effective in confining the cellular contents during mechanical shearing of the cell at the 10-microm capillary entrance. The contents of individual cells were simultaneously injected into parallel channels resulting in electrophoretic separation as recorded by laser-induced fluorescence of the labeled cellular contents.  相似文献   

6.
Electroosmotic capillary flow with nonuniform zeta potential   总被引:1,自引:0,他引:1  
The present work is an analytical and experimental study of electroosmotic flow (EOF) in cylindrical capillaries with nonuniform wall surface charge (zeta-potential) distributions. In particular, this study investigates perturbations of electroosmotic flow in open capillaries that are due to induced pressure gradients resulting from axial variations in the wall zeta-potential. The experimental inquiry focuses on electroosmotic flow under a uniform applied field in capillaries with an EOF-suppressing polymer adsorbed onto various fractions of the total capillary length. This fractional EOF suppression was achieved by coupling capillaries with substantially different zeta-potentials. The resulting flow fields were imaged with a nonintrusive, caged-fluorescence imaging technique. Simple analytical models for the velocity field and rate of sample dispersion in capillaries with axial zeta-potential variations are presented. The resulting induced pressure gradients and the associated band-broadening effects are of particular importance to the performance of chemical and biochemical analysis systems such as capillary electrokinetic chromatography and capillary zone electrophoresis.  相似文献   

7.
We report a system that allows the simultaneous aspiration of one or more cells into each of five capillaries for electrophoresis analysis. A glass wafer was etched to create an array of 1-nL wells. The glass was treated with poly(2-hydroxyethyl methacrylate) to control cell adherence. A suspension of formalin-fixed cells was placed on the surface, and cells were allowed to settle. The concentration of cells and the settling time were chosen so that there was, on average, one cell per well. Next, an array of five capillaries was placed so that the tip of each capillary was in contact with a single well. A pulse of vacuum was applied to the distal end of the capillaries to aspirate the content of each well into a capillary. Next, the tips of the capillaries were placed in running buffer and potential was applied. The cells lysed upon contact with the running buffer, and fluorescent components were detected at the distal end of the capillaries by laser-induced fluorescence. The electrophoretic separation efficiency was outstanding, generating over 750,000 theoretical plates (1,800,000 plates/m). In this example, AtT-20 cells were used that had been treated with TMR-G(M1). The cells were allowed to metabolize this substrate into a series of products before the cells were fixed. The number of cells found in each well was estimated visually under the microscope and was described by a Poisson distribution with mean of 0.98 cell/well. This system provides an approach to high-throughput chemical cytometry.  相似文献   

8.
Over the past decade, chemical cytometry performed by capillary electrophoresis (CE) has become increasingly valuable as a bioanalytical tool to quantify analytes from single cells. However, extensive use of CE-based chemical cytometry has been hindered by the relatively low throughput for the analysis of single adherent cells. In order to overcome the low throughput of CE-based analysis of adherent cells and increase its utility in evaluating cellular attributes, new higher throughput methods are needed. Integration of a coaxial buffer exchange system with CE-based chemical cytometry increased the rate of serial analyses of cells. In the designed system, fluid flow through a tube coaxial to the separation capillary was used to supply electrophoretic buffer to the capillary. This sheath or coaxial fluid was turned off between analysis of cells and on during cell sampling and electrophoresis. Thus, living cells were not exposed to the nonphysiologic electrophoretic buffer prior to lysis. Key parameters of the system such as the relative capillary-sheath positions, buffer flow velocities, and the cell chamber design were optimized. To demonstrate the utility of the system, rat basophilic leukemic cells loaded with Oregon green and fluorescein were serially lysed and loaded into a capillary. Separation of the contents of 20 cells at a rate of 0.5 cells/min was demonstrated.  相似文献   

9.
A nondestructive method for sampling from ultrasmall environments has been developed utilizing electrophoresis in nanometer inner diameter capillaries and etched electrochemical detection. The desire to study increasingly smaller biological environments such as mammalian cells has led to the need for capillary electrophoresis techniques with subpicoliter volume sampling capabilities. This sampling technique involves the fabrication of a microinjector at the tip of a 770-nm-inner diameter capillary and the use of electroporation for insertion through the membrane. Separations of catecholamines sampled from the interior of intact liposomes have been achieved. A separation of a cytoplasmic sample taken from an intact mammalian cell has also been obtained.  相似文献   

10.
The behavior of a strong, cation-exchange material (propanesulfonic acid, SCX) has been studied in capillary electrophoresis (CE) and capillary electrochromatography (CEC) by the use of coated and packed capillaries. In aqueous electrolytes, the SCX-coated capillary showed a far more consistent electroosmotic flow over the pH range 3.6-10.5, compared to untreated fused silica. However, in similar electrolytes containing 80% (v/v) acetonitrile, both coated and untreated capillaries performed similarly, casting doubts upon the stability of the SCX coating. The effect of voltage and mobile-phase parameters such as pH, ionic strength, and organic content was studied in CEC for both 3-μm SCX and C(18) packing materials, and the results were compared in terms of linear velocities, currents, and conductivities. Only at pH 5 and below was a higher EOF velocity than expected observed for the SCX column. In accordance with theory, the EOF was seen to increase with decreasing ionic strength for the C(18) column. However, for the SCX column, this was not the case: the EOF showed a general reduction as the ionic strength was decreased. The greatest anomaly was observed on changing the acetonitrile composition: the EOF showed a consistent decline with increasing organic, whereas the EOF in both the open capillary and C(18) column decreased and then started to rise with acetonitrile contents above 70% (v/v).  相似文献   

11.
Capillary electrophoresis is ideally suited to chemical analysis of individual cells. Small mammalian somatic cells (approximately 15 microns in diameter) can be analyzed by injecting the intact cell into a capillary, lysing the cell, separating and detecting the cellular components, and reconditioning the capillary prior to the next injection. In this paper, we report on technical improvements to single-cell analysis. We designed an inexpensive multipurpose single-cell injector that facilitates the following: (i) monitoring of injection, (ii) reproducible pressure- or electrokinetic-driven injection of the cell, (iii) complete cell lysis by SDS within 30 s of injection, and (iv) pressure-driven capillary reconditioning. Furthermore, we report on the analysis of glycosylation and glycolysis in single human carcinoma cells (HT29 cell line). The reliability and quality of the analysis is confirmed by comparing electropherograms from single cells and those from purified cell extracts.  相似文献   

12.
In the past decade, capillary electrophoresis has demonstrated increasing utility for the quantitative analysis of single cells. New applications for the analysis of dynamic cellular properties demand sampling methods with sufficient temporal resolution to accurately measure these processes. In particular, intracellular signaling pathways involving many enzymes can be modulated on subsecond time scales. We have developed a technique to rapidly lyse an adherent mammalian cell using a single electrical pulse followed by efficient loading of the cellular contents into a capillary. Microfabricated electrodes were designed to create a maximum voltage drop across the flattened cell's plasma membrane at a minimum interelectrode voltage. The influence of the interelectrode distance, pulse duration, and pulse strength on the rate of cell lysis was determined. The ability to rapidly lyse a cell and collect and separate the cellular contents was demonstrated by loading cells with Oregon Green and two isomers of carboxyfluorescein. All three fluorophores were detected with a separation efficiency comparable to that of standards. Parallel comparison of electrical lysis to that produced by a laser-based lysis system revealed that the sampling efficiencies of the two techniques were comparable. Rapid cell lysis by an electrical pulse may increase the application of capillary electrophoresis to the study of cellular dynamics requiring fast sampling times.  相似文献   

13.
Tseng WL  Chang HT 《Analytical chemistry》2000,72(20):4805-4811
Proteins were separated in 0.6% poly(ethylene oxide) (PEO) solutions using a capillary filled with buffers prior to analysis and were detected by laser-induced native fluorescence using a pulsed Nd:YAG laser. PEO solutions entered the capillary by electroosmotic flow (EOF) during the separation. The composition and concentration of the buffer affected the adsorption of PEO molecules on the capillary surface and, consequently caused changes in the EOF. Short separation times (< 7 min) were achieved on a sample solution of five proteins in a 0.6% PEO solution containing 5 microg/mL ethidium bromide using a capillary pre-filled with 100 mM TRIS-borate (TB) buffers (pH 10,0). We also extended this method for on-line concentration and separation of proteins. Proteins dissolved in low-conductivity media stacked in both TB buffers and in PEO solutions. The peak height was proportional to the injection volume up to 2.1 microL using an 80-cm capillary filled with 400 mM TB buffers. Using large injection volumes (2.1 microL), we achieved a limit of detection (S/N = 3) of 31 pM for carbonic anhydrase, which was a 1696-fold sensitivity enhancement compared to a conventional injection method (1 kV for 10 s). In high-conductivity media (urine matrix), stacking occurred at the boundary between the sample zone and PEO solutions. A urine sample without any pretreatment was analyzed, and after stacking, several peaks were detected. Spiking the urine sample with human serum albumin (HSA) affected the fluorescent intensity of some analytes as a result of interaction with HSA.  相似文献   

14.
The metabolism of glycosphingolipids by the malaria-causing parasite Plasmodium falciparum plays an important role in the progression of the disease. We report a new and highly sensitive method to monitor the uptake of glycosphingolipids in infected red blood cells (iRBCs). A tetramethylrhodamine-labeled glycosphingolipid (GM1-TMR) was used as a substrate. Uptake was demonstrated by fluorescence microscopy. The iRBCs were lysed with a 15% solution of saponin and washed with phosphate buffered saline to release intact parasites. The parasites were further lysed and the resulting homogenates were analyzed by capillary electrophoresis with laser-induced fluorescence detection. The lysate from erythrocytes infected at 1% parasitemia generated a signal 20 standard deviations larger than uninfected erythrocytes, which suggests that relatively low infection levels can be studied with this technique.  相似文献   

15.
Liu H  Zhang L  Zhu G  Zhang W  Zhang Y 《Analytical chemistry》2004,76(21):6506-6512
The construction and evaluation of an on-column etched fused-silica porous junction for on-line coupling of capillary isoelectric focusing (CIEF) with capillary zone electrophoresis (CZE) are described. Where two separation columns were integrated on a single piece of fused-silica capillary through the etched approximately 4 to 5-mm length porous junction along the capillary. The junction is easily prepared by etching a short section of the capillary wall with HF after removing the polyimide coating. The etched section becomes a porous glass membrane that allows only small ions related to the background electrolyte to pass through when high voltage is applied across the separation capillary. The primary advantages of this novel porous junction interface over previous designs (in which the interface is usually formed by fracturing the capillary followed by connecting the two capillaries with a section of microdialysis hollow fiber membrane) are no dead volume, simplicity, and ruggedness, which is particularly well suited for an on-line coupling capillary electrophoresis-based multiple dimensional separation system. The performance of the 2D CIEF-CZE system constructed by such an etched porous junction was evaluated by the analyses of protein mixtures.  相似文献   

16.
The cytosol of a single adherent cell was collected by the electrical cell lysis method with a Pt-ring capillary probe, and the cellular messenger RNA (mRNA) was analyzed at a single-cell level. The ring electrode probe was positioned 20 microm above the cultured cells that formed a monolayer on an indium-tin oxide (ITO) electrode, and an electric pulse with a magnitude of 40 V was applied for 10 micros between the probe and the ITO electrodes in an isotonic sucrose solution. Immediately after the electric pulse, less than 1 microL of the lysed solution was collected using a micro-injector followed by RNA purification and first strand cDNA synthesis. Real-time PCR was performed to quantify the copy numbers of mRNA encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression inside the single cell. The average copy numbers of GAPDH mRNA collected by the electrical cell lysis method were found to be comparable to those obtained by a simple capillary suction method. Although single-cell analysis has already been demonstrated, we have shown for the first time that the fast electrical cell lysis can be used for quantitative mRNA analysis at the single-cell level. This electrical cell lysis method was further applied for the analysis of mRNA obtained from single spheroids-the aggregated cellular masses formed during the three-dimensional culture -- as a model system to isolate small cellular clusters from tissues and organs.  相似文献   

17.
We previously introduced a vacuum deposition interface for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) on a moving surface (e.g., quartz wheel, Mylar tape, metal target). In our present work, the approach has been extended to demonstrate parallel analysis for multiple on-line infusion MALDI MS and capillary array electrophoresis (CAE)-MALDI MS. In the infusion mode, individual peptide samples were simultaneously deposited on a Mylar tape cartridge using an array of eight capillaries, yielding eight parallel traces. For CAE-MALDI/TOF MS, the same number of separation capillaries were coupled with an array of eight infusion capillaries using a common liquid junction, containing matrix solution. A fast-scanning mirror was employed to traverse the beam of the desorption laser across the Mylar tape to probe one trace at a time. The positions of the eight sample traces formed on the tape were automatically determined, and all samples were analyzed in rapid sequence using a kilohertz repetition rate laser and a high-throughput data acquisition system. The instrumentation was operated with CAE MS for high-throughput analysis without compromising data quality. The principles of parallel separation-vacuum deposition should be generally applicable to MALDI/TOF MS analysis for proteomics and other areas where separation and high throughput are required.  相似文献   

18.
In two-dimensional capillary electrophoresis, a sample undergoes separation in the first dimension capillary by sieving electrophoresis. Fractions are periodically transferred across an interface into a second dimension capillary, where components are further resolved by micellar electrokinetic capillary electrophoresis. Previous instruments employed one pair of capillaries to analyze a single sample. We now report a multiplexed system that allows separation of five samples in parallel. Samples are injected into five first-dimension capillaries, fractions are transferred across an interface to 5 second-dimension capillaries, and analyte is detected by laser-induced fluorescence in a five-capillary sheath-flow cuvette. The instrument produces detection limits of 940 +/- 350 yoctomoles for 3-(2-furoyl)quinoline-2-carboxaldehyde labeled trypsin inhibitor in one-dimensional separation; detection limits degrade by a factor of 3.8 for two-dimensional separations. Two-dimensional capillary electrophoresis expression fingerprints were obtained from homogenates prepared from a lung cancer (A549) cell line, on the basis of capillary sieving electrophoresis (CSE) and micellar electrophoresis capillary chromatography (MECC). An average of 131 spots is resolved with signal-to-noise greater than 10. A Gaussian surface was fit to a set of 20 spots in each electropherogram. The mean spot width, expressed as standard deviation of the Gaussian function, was 2.3 +/- 0.7 transfers in the CSE dimension and 0.46 +/- 0.25 s in the MECC dimension. The standard deviation in spot position was 1.8 +/- 1.2 transfers in the CSE dimension and 0.88 +/- 0.55 s in the MECC dimension. Spot capacity was 300.  相似文献   

19.
In this article, a microfluidic platform integrating capillary electrophoresis and bioluminescence (BL) detection that was fabricated in poly(dimethylsiloxane) (PDMS) with lab-on-a-chip technology was demonstrated for cellular metabolic analyses. A microchannels network, "cross combining with Y", was designed to perform on-chip sample preparation, separation, and BL detection of ATP and ATP-conjugated metabolites, using firefly luciferin-luciferase BL system. A dynamic modification of the channel wall of PDMS proved to be crucial to reverse the direction of electroosmotic flow (EOF), which was uniquely achieved by a prewash cycle with a cationic surfactant didodecyldimethylammonium bromide. The influences of surfactant on the EOF and BL reaction were also investigated. Quantitative analyses revealed a dynamic linear range over 2 orders of magnitude for ATP, with a detection limit down to submicromolar (midattomole). The method was validated by measuring cellular ATP of E. coli. with direct on-chip cell lysis. Further work was emphasized on ATP-conjugated metabolite analysis, using galactose as an example. Assays of galactose in human urine samples confirmed the reliability of the protocol, which revealed good prospect of this platform for ATP-conjugated submetabolomic profiling.  相似文献   

20.
This paper uses capillary electrophoresis to follow a globular metalloprotein--bovine carbonic anhydrase II (BCA, EC 4.2.1.1)--on unfolding upon treatment with sodium dodecyl sulfate (SDS) and refolding upon removal of SDS, both in the presence and the absence of its Zn(II) cofactor. This research demonstrates that the Zn(II) cofactor is not required for refolding into a nativelike conformation, does not remain associated with the unfolded protein, and does not significantly change the rate of refolding. The presence of the Zn(II) cofactor, however, does increase the total amount of recovered protein by a factor of 2. Capillary electrophoresis could distinguish between native and denatured protein, based on the difference in electrophoretic mobility between the native protein and the aggregate of denatured protein and SDS. In addition, the active site was probed by observing binding of BCA to a charged arylsulfonamide using affinity capillary electrophoresis. These studies provide a foundation for future physical-organic studies using BCA as a model to examine interactions between proteins and SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号