首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
将传统的语义分割SegNet网络用于高分辨率遥感影像的建筑物提取时,分割的建筑物存在边界模糊、精度较低、错检漏检等问题。为了解决上述问题,提出一种改进SegNet网络+CRF语义分割方法。编码阶段的最低分辨率层引入空洞金字塔池化模型,通过并行的空洞卷积操作扩大特征提取的感受野;解码阶段构建特征金字塔实现特征多尺度融合,弥补上采样过程中丢失的特征信息;最后,预测图像送入全连接条件随机场模型进行后处理,优化提取的建筑物边缘。实验表明,相较于原SegNet网络,改进方法的建筑物提取像素精度、召回率、平均交并比分别提高了0.48%、1.29%、2.36%。  相似文献   

2.
快速、可靠地获取遥感影像中的水体对于指导人类生产活动和掌握水资源的分布规律、开发保护具有重要意义。本研究根据无人机遥感影像在复杂环境下采用OCRNet语义分割模型结合HRNet骨干网进行水体提取,充分利用了水图像的特征,有效抑制了非水噪声,加快了模型的收敛速度。实验结果表明,该网络在准确率上有着不错的表现,Acc可达到99.30%,mIoU为0.9281,kappa系数(KC)为0.9231。  相似文献   

3.
为提取高分辨率遥感影像的典型地物,且针对Deeplabv3+在遥感图像分割任务中,边缘分割比较模糊,存在孔洞和遗漏分类的问题,基于深度学习提出在Deeplabv3+加入通道注意力机制模块以增强分割结果的方法。先通过深度卷积网络得到的高级特征图输入到通道注意力机制,进行通道间像素特征强化,再通过空间金字塔池获得多尺度输入图像,并且进行了类别不平衡的修正,提取出了完整的图像分割信息,实现了分割边界信息的优化。最后,通过采集广州市高分二号遥感影像进行遥感数据处理、标注、增强之后进行实验,对比经典语义分割网络U-Net、SegNet、PSPNet,结果表明,该方法的评估指标MIOU达到了96.19%,MPA达到了97.85%。  相似文献   

4.
随着遥感图像的快速发展与广泛应用,基于遥感影像的建筑物提取能够及时、准确地提取建筑物信息,在地图快速更新、城市管理等应用中具有重要的研究意义。目前经神经网络进行特征分析提取的建筑物灰度图存在图像模糊、错分建筑物等情况,并且需要经过二值化处理才能为后续工作所利用。为了提高分类精度,本文在神经网络初提取的基础上,首先采取大津法分割,形态学处理灰度图。并改进马尔可夫随机场方法,提出根据图像局部邻域特征动态估计先验参数β的新方法,且将原始图像特征引入马尔可夫随机场,对大津法分割的结果进行进一步的分割,并对建筑物边缘的锯齿边界进行修正,以提高分类精度。实验表明,所用方法能够有效减少神经网络提取出的灰度图中的错分建筑物。  相似文献   

5.
自然灾害种类繁多, 通过遥感影像语义分割相对比较困难. 为了能够更好实现遥感影像分割, 本文提出一种基于生成对抗网络的3层遥感影像语义分割模型, 针对不同场景的解析, 基于全卷积神经网络FCN, 设计一种多层次的遥感语义分割框架. 有效对遥感图像语义分割进行处理, 从而提高了模型的分割精度. 实验表明利用这种模型是有效的, 特别是受损建筑的分割结果, mIoU为82.28%, 通过该模型与其他网络模型进行对比, 其性能评价指标明显优于其他网络模型. 最后, 通过对自然灾害各种场景影像进行分析, 为应急管理部门提供一份可靠的数据报告.  相似文献   

6.
针对目前已有基于遥感影像道路中心线提取算法易受道路旁树木遮挡、建筑物及其阴影覆盖和道路上车辆等因素影响,造成提取出来的道路中心线存在断裂、不完整现象,提出了一种基于深度学习语义分割的道路掩膜,引用细化算法提取道路中心线矢量数据,对矢量道路中心线进行优化的道路中心线提取方法。首先,通过对深度学习语义分割提取出来的道路掩膜进行形态学膨胀处理,减少道路掩膜出现部分断裂、空洞、不完整现象;然后,利用细化算法,对膨胀处理后的道路掩膜提取道路中心线并进行矢量化;最后,结合出现断裂处的道路中心线间几何、空间等约束关系,进行优化处理。实验结果表明:该方法相对于其他道路中心线提取方法,具有较高的精确度、完整度,在不考虑前期深度学习样本制作、模型训练所使用时间的情况下,提取效率也优于其他方法;生成了标准格式的矢量道路中心线数据,可直接用于实际生产。  相似文献   

7.
基于简化随机场模型的高分辨率遥感影像分割方法   总被引:3,自引:0,他引:3  
提出了一种灰度分割的基础上添加辅助的纹理分割的基于简化随机场模型的遥感影像目标分割方法,即用常用的描述局部图像特点的特征代替MRF中定义的特征,将这些特征组合成特征向量进行模糊C均值聚类完成分割。给出了算法流程和实验结果,并将该结果与基于高斯马尔可夫随机场模型法分割的结果进行比较,实验结果表明简化随机场模型法在保证一定的分割精度的情况下,分割速度明显快于高斯马尔可夫随机场模型法。  相似文献   

8.
高分辨率遥感影像含有丰富的地理信息.目前基于传统神经网络的语义分割模型不能够对遥感影像中小物体进行更高维度的特征提取,导致分割错误率较高.本文提出一种基于编码与解码结构特征连接的方法,对DeconvNet网络模型进行改进.模型在编码时,通过记录池化索引的位置并应用于上池化中,能够保留空间结构信息;在解码时,利用编码与解码对应特征层连接的方式使模型有效地进行特征提取.在模型训练时,使用设计的预训练模型,可以有效地扩充数据,来解决模型的过拟合问题.实验结果表明,在对优化器、学习率和损失函数适当调整的基础上,使用扩充后的数据集进行训练,对遥感影像验证集的分割精确度达到95%左右,相对于DeconvNet和UNet网络模型分割精确度有显著提升.  相似文献   

9.
针对传统的高分影像建筑物提取方法存在分割精度低和分割边界模糊等问题,提出基于U-net神经网络的高分辨率光学遥感影像建筑物提取方法。方法包含U-net神经网络和全连接CRFs网络,依据图像特征进行语义分割并优化分割结果;在实现U-net神经网络和全连接CRFs模型的基础上,根据U-net的特点以及本文数据特性调试出不同数据量的增强扭曲数据集进行测试,以达到最高鲁棒的分割效果;调试全连接CRFs模型,使得后处理结果更加贴近影像中的真实情况。实验结果表明,与利用传统分割方法的分割效果相比,该方法分割精度及地物边缘分割完整度都得到了显著提升,对高分辨率遥感影像中建筑物的实验分割精度达到了87.64%。  相似文献   

10.
在先进的交通系统中,道路提取是最重要的任务之一。高分辨率遥感影像道路区域的提取具有复杂的背景和道路网络的异质性、高类间差异和低类内差异等特点。近几年来,卷积神经网络(CNN)在道路提取方面取得了里程碑式的进展。虽然CNN已经取得了很好的发展,但是由于卷积运算的局域性,网络无法很好地学习全局和长程语义信息交互。本文提出了Swin Transformer Unet,它结合了带有跳跃连接的U型编解码器结构和带有移位窗口的Swin Transformer模块。为了获得更好的性能,本文采用了数据增广、数据预处理等技术。本文选取马萨诸塞州道路数据集作为数据集进行道路提取实验,结果表明,所提出的网络在遥感图像道路提取中的性能优于其他U形网络,可以实现遥感影像道路的精确提取。  相似文献   

11.
建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing, AIDH)和条件随机场(Confidential random field, CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。以超像素块作为测试样本,使用AIDH学习方法作为CRF一元势函数,生成初始类别标签。采用Potts模型构建CRF的二元势函数进行标签的再学习,平滑目标邻域信息,解决目标检测中的漏判问题。最后,使用基于凸壳边界的方法生成最小外接目标框作为目标检测结果。实验表明,本文方法在目标检测的精度和效率上取得了较好的平衡。  相似文献   

12.
针对于当前遥感影像农作物提取存在的识别精度较低、边缘识别效果较差、提取速度慢等问题,提出了一种改进DeepLabV3+网络的遥感影像农作物分割方法。将特征提取网络改为更轻量级的MobileNetV2网络,空洞空间金字塔池化模块中的普通卷积改为深度可分离卷积,大幅减少模型计算量,提高模型计算速度;在特征提取模块以及空洞空间金字塔池化模块加入双注意力机制,进一步优化模型边缘识别效果,提升模型分割精度。此外针对农作物数据集类别不平衡问题,引入加权损失函数,给予玉米、薏米与背景类不同的权重,提高模型对农作物区域分割精度。以2019年某地区的无人机遥感影像为研究对象,对玉米、薏米两种农作物进行分割。实验结果表明,改进DeepLabV3+算法像素准确率可达到93.9%,平均召回率可达到90.7%,平均交并比可达到83.3%,优于传统DeepLabV3+、Unet、Segnet等常用于农作物提取的分割方法,对农作物具有更好的分割效果。  相似文献   

13.
基于对象建模的遥感影像建筑物提取方法   总被引:2,自引:0,他引:2  
研究城镇建筑物的提取是遥感影像分析应用中的一项重要内容.遥感影像建筑物结构和光谱的多样性,使结构、光谱等特征的建筑物提取变得极其复杂.根据遥感影像的建筑物纹理区别于其它空间对象纹理的特点,为提高影像分辨率,提出Gabor纹理块的遥感影像对象模型方法应用于遥感影像城镇建筑物的提取.以整个城镇为对象,以建筑物、道路、绿地等不同城镇区域为组成对象的纹理块,建立基于纹理块的对象模型,利用模型进行遥感影像对象的纹理标定,最终提取出城镇建筑物.实验结果表明方法克服了建筑物结构复杂性和多样性以及背景环境的影响,能很好地从城镇遥感影像中提取建筑物.  相似文献   

14.
针对传统建立水库相关数据库的方法多为线下人工统计,受到诸多因素制约的缺陷,将网络信息、电子地图及遥感影像等数据综合利用起来,实现水库自动提取。利用网络爬虫从官方水利政务网站抓取相关信息,筛选出最新的水库名称及所属地等数据,再根据水库名称及所属地,调用百度、高德等地图网站提供的应用接口,获取水库的空间坐标信息,并利用水库坐标对遥感影像做缓冲区分析,提取出水库水体范围,得到 1 个含有水库名称、坐标、面矢量图的水库基础数据库。经过验证,提取结果的查准率为 0.973 5,查全率为 0.611 3, 作为二者的调和平均值达到 0.751,能够完整监测并提取出大中型水库,但对小型水库的监测提取效果一般,可解决传统水库提取方法需要先验知识的问题,提高对水库的区域性动态监测能力。  相似文献   

15.
基于对象的遥感影像道路提取   总被引:1,自引:0,他引:1  
刘琳琳  洪文 《微计算机信息》2008,24(12):300-302
根据高分辨率遥感影像道路网络的特点,提出一种基于对象的道路提取算法.首先根据道路的局部光谱特性和几何特性,使用图像分割和边缘提取算法对图像进行预处理.然后,根据贝叶斯理论,基于道路的全局几何特性和拓扑特性,建立网络的数学模型,将网络提取问题转化为全局优化问题,使用可逆跳跃马尔可夫链蒙特卡罗算法求取全局最优网络.实验结果表明,该方法充分利用了道路的各种特性,可以有效地从遥感图像中提取出道路,具有较高的精度和实用性.  相似文献   

16.
在高分辨率遥感影像中,水体与阴影(尤其是高大建筑物阴影)、暗色地物不易区 分。针对 GF-2 遥感影像的光谱特性的大量实验研究,提出了一种新综合水体指数法(NCWI)来 增强水体区域信息;同时利用改进的 OSTU 结合鸡群算法(CSO)快速自适应地确定最佳分割阈 值,进而得到最终的水体区域。将其同归一化 NDWI、改进谱间关系法、主成分分析综合法等 常见水体信息提取方法应用于 GF-2 遥感影像水体信息提取,利用采用实地采样和人工解译的 混淆矩阵对提取的水体区域结果进行精度验证和对比分析,从而验证了其有效性和高效性。4 个实验区域的结果证明,该算法可以快速有效地提取水体信息,精确度分别达到 97.82%, 97.44%,92.13%,96.94%。  相似文献   

17.
遥感影像在水资源调查和洪涝灾害监测中发挥着重要作用,但从遥感影像中提取水体通常面临着阴影和狭小水体漏提等难题。针对单一方法在水体提取中的局限性,引入分类器集成的思想,提出一种基于投票法融合的水体提取方法,首先利用Bagging、Random Forests和神经网络(NN)分类器对遥感影像进行分类,然后采用多数投票法从决策层融合3个分类结果,得到研究区水体提取结果。试验结果表明,该方法能够有效去除阴影且能较好地识别狭小水体,具有良好的应用效果。  相似文献   

18.
基于PDE方法的遥感图像处理   总被引:2,自引:0,他引:2  
前期处理后的遥感图像中主要剩有高斯白噪声和椒盐噪声,传统平滑滤波技术很难同时兼顾除噪和保持边缘的要求;所改进的偏微分方程(PDE)滤波算法能很好地适应遥感图像噪声特征,在消除噪声的同时能很好的保留边缘和纹理细节;仿真实验验证了算法的正确性及有效性;研究了算法关键参数的选择范围和处理效果,为实际应用提供指导。  相似文献   

19.
提出一种基于SA-WPSO的遥感图像校正方法。该方法利用多项式模型对图像进行初步几何校正,得到多项式校正系数后,将模拟退火(SA)思想引入粒子群优化(PSO)算法,通过改进的SA-WPSO算法优化多项式校正系数,在此基础上实现图像的几何校正。实验结果证明,与二次多项式及三次多项式校正方法相比,该方法的校正精度更高、鲁棒性更好。  相似文献   

20.
针对遥感影像中道路目标细节丰富且呈带状分布的特点,造成狭长的道路结构提取困难的问题,设计并实现了一种基于SPUD-ResNet的道路提取方法。该方法利用空洞卷积构建残差网络编码器,并通过跳跃连接与对应解码器相连,有效加速网络的收敛并保留道路的细节信息;为了更有效地捕获狭长道路结构的长距离依赖关系,分别构建条形池化模块和混合池化模块,增强网络对条形道路结构特征的获取能力;利用道路结构的几何信息和结构相似性指数设计混合损失函数,精细化道路边界,去除道路提取结果中的模糊预测。在Massachusetts Roads数据集上的实验结果表明,所提方法在召回率、精确度和F1-score指标分别达到了83.4%、84.5%和83.9%,提升了道路提取的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号