首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
特征选择是文本分类技术中重要的处理步骤,特征词选择的优劣直接关系到后续文本分类结果的准确率。使用传统特征选择方法如互信息(MI)、信息增益(IG)、χ2统计量(CHI)等提取的特征词仍存在冗余。针对这一问题,通过结合词频-逆文档率(TF_IDF)和最大相关最小冗余标准(MRMR),提出了一种基于MRMR的特征词二次选取方法TFIDF_MRMR。实验结果表明,该方法可以较好地减少特征词之间的冗余,提高文本分类的准确率。  相似文献   

2.
论文提出了一种基于信息增益改进的信息增益文本特征选择方法.首先对数据集按类进行特征选择,减少数据集不平衡性对特征选取的影响.其次运用特征出现概率计算信息增益权值,降低低频词对特征选择的干扰.最后使用离散度分析特征在每类中的信息增益值,过滤掉高频词中的相对冗余特征,并对选取的特征应用信息增益差值做进一步细化,获取均匀精确的特征子集.通过对照不同算法的测评函数值,表明论文选取的特征子集具有更好的分类能力.  相似文献   

3.
一种基于聚类的文本特征选择方法   总被引:6,自引:0,他引:6  
传统的文本特征选择方法存在一个共性,即通过某种评价函数分别计算单个特征对类别的区分能力,由于没有考虑特征间的关联性,这些方法选择的特征集往往存在着冗余。针对这一问题,提出了一种基于聚类的特征选择方法,先使用聚类的方法对特征间的冗余性进行裁减,然后使用信息增益的方法选取类别区分能力强的特征。实验结果表明,这种基于聚类的特征选择方法使得文本分类的正确性得到了有效的提高。  相似文献   

4.
文本分类的特点是高维的特征空间和高度的特征冗余.针对这两个特点,采用χ\\+2统计量处理高维的特征空间,利用信息新颖度的思想处理高度的特征冗余,根据最大边缘相关的定义,将二者有机结合,提出一种基于最大边缘相关的特征选择方法.该方法可以在特征选择过程中减少大量的冗余特征.最后,在Reuters-21578 Top10和OHSCAL两个文本数据集上进行实验.实验结果表明,基于最大边缘相关的特征选择方法比χ\\+2统计量和信息增益两种特征选择方法更高效,并且能够提高nave Bayes,Rocchio和kNN 3种不同分类器的性能.  相似文献   

5.
在文本分类领域中.目前较常用到的特征选择算法都是通过某种评价函数分别计算单个特征对类别的区分能力,仅仅考虑了特征与类别之间的关联性,而对特征与特征之间的关联性没有予以足够的重视.这导致了特征集往往存在着冗余。针对这一问题,提出一种新的用于文本分类的特征选择算法.它可以帮助选出区分能力强、弱相关的特征。经实验验证.该方法比传统的特征选择算法具有更好的性能。  相似文献   

6.
当前,常用文本分类特征选择算法主要通过某种评价函数来计算单个特征对类别的区分能力,由于仅考虑了特征和类别之间的关联性,忽略了特征与特征之间的相关性,从而导致特征集存在冗余。针对这一问题,本文提出了一种新的用于文本分类的特征选择算法,该算法可以帮助选出类别区分能力强,特征之间关联性弱的特征。实验证实,该算法的性能要优于传统的特征选择算法。  相似文献   

7.
基于互信息的无监督特征选择   总被引:5,自引:0,他引:5  
在数据分析中,特征选择可以用来降低特征的冗余,提高分析结果的可理解性和发现高维数据中隐藏的结构.提出了一种基于互信息的无监督的特征选择方法(UFS-MI),在UFS-MI中,使用了一种综合考虑了相关度和冗余度的特征选择标准UmRMR(无监督最小冗余最大相关)来评价特征的重要性.相关度和冗余度分别使用互信息来度量特征与潜在类别变量之间的依赖和特征与特征之间的依赖.UFS-MI同时适用于数值型和非数值型特征.在理论上证明了UFS-MI的有效性,实验结果也表明UFS-MI可以达到与传统的特征选择方法相当甚至更好的性能.  相似文献   

8.
一种改进的文本分类特征选择方法   总被引:1,自引:0,他引:1       下载免费PDF全文
文本分类中特征空间的高维问题是文本分类的主要障碍之一。特征选择(Feature Selection)是一种有效的特征降维方法。现有的特征选择函数主要有文档频率(DF),信息增益(IG),互信息(MI)等。基于特征的基本约束条件以及高性能特征选择方法的设计步骤,提出了一种改进的特征选择方法SIG。该特征选择方法在保证分类效果的同时,提高了对中低频特征的偏向。在语料集Reuters-21578上的实验证明,该方法能够获得较好的分类效果,同时有效提高了对具有强分类能力的中低频特征的利用。  相似文献   

9.
文本特征选择是文本分类的核心技术。针对信息增益模型的不足之处,以特征项的频数在文本中不同层面的分布为依据,分别从特征项基于文本的类内分布、基于词频的类内分布以及词频的类间分布等角度对IG模型逐步进行改进,提出了一种基于词频分布信息的优化IG特征选择方法。随后的文本分类实验验证了提出的优化IG模型的有效性。  相似文献   

10.
随着WWW的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。基于向量空间的文本分类方法中,信息增益是一种有效的特征选择方法。本文改进信息增益的特征选择方法:降低负类对分类的贡献;改进特征项在类中的均匀程度对分类的贡献。实验结果表明,经过改进的信息增益的特征选择方法在分类效果上有显著的提高。  相似文献   

11.
为降低文本特征空间维度,提高数据挖掘处理数据的效率,提出两阶段文本特征选择算法。结合方差和平均中位数2种方法构建高相关性的特征子集进行初步降维,并将其作为差分进化算法的初始特征种群。利用特征词的累计词频和文档频率设计适应度函数,将多个特征差向量和局部最优特征引入变异操作中,增加特征子集的扰动性,加快差分进化算法的收敛速度,获得最优特征子集。在WebKB和Reuters-21578数据集上进行实验,结果表明,该算法在准确率、召回率和F1值上均优于TDM5、MADAC等算法,能够降低文本特征空间的维度,提高文本聚类效果。  相似文献   

12.
黄源  李茂  吕建成 《计算机科学》2015,42(5):54-56, 77
开方检验是目前文本分类中一种常用的特征选择方法.该方法仅关注词语和类别间的关系,而没有考虑词与词之间的关联,因此选择出的特征集具有较大的冗余度.定义了词语的“剩余互信息”概念,提出了对开方检验的选择结果进行优化的方法.使用该方法可以得到既有很强表征性又有很高独立性的特征集.实验表明,该方法表现良好.  相似文献   

13.
杨凯峰  张毅坤  李燕 《计算机工程》2010,36(17):33-35,38
传统的文档频率(DF)方法在进行特征选择时仅考虑特征词在类别中出现的DF,没有考虑特征词在每篇文档中出现的词频率(TF)问题。针对该问题,基于特征词在每篇文档中出现的TF,结合特征词在类别中出现的DF提出特征选择的新算法,并使用支持向量机方法训练分类器。实验结果表明,在进行特征选择时,考虑高词频特征词对类别的贡献,可提高传统DF方法的分类性能。  相似文献   

14.
雷军程  黄同成  柳小文 《计算机科学》2012,39(7):250-252,275
在分析比较几种常用的特征选择方法的基础上,提出了一种引入文本类区分加权频率的特征选择方法TFIDF_Ci。它将具体类的文档出现频率引入TFIDF函数,提高了特征项所在文档所属类区分其他类的能力。实验中采用KNN分类算法对该方法和其他特征选择方法进行了比较测试。结果表明,TFIDF_Ci方法较其他方法在不同的训练集规模情况下具有更高的分类精度和稳定性。  相似文献   

15.
基于K-均值聚类的无监督的特征选择方法   总被引:10,自引:1,他引:10  
模式识别方法首先要解决的一个问题就是特征选择,目前许多方法考虑了有监督学习的特征选择问题,对无监督学习的特征选择问题却涉及得很少。依据特征对分类结果的影响和特征之间相关性分析两个方面提出了一种基于K-均值聚类方法的特征选择算法,用于无监督学习的特征选择问题。  相似文献   

16.
运动想象脑电是一种多通道高维信号,特征选择可以降低特征维数,选择更具判别性的特征,从而有效提高脑电解码的性能。现有的特征选择方法主要包括过滤式、包裹式和嵌入式方法,这3类方法各有优缺点。为了综合利用各类方法的优势,提出2种混合特征选择方法。第1种方法,使用最小绝对值收缩和选择算子(LASSO)进行特征选择,得到LASSO模型的权重之后,再设定一系列权重阈值进行二次特征筛选。第2种方法,使用Fisher分数对特征进行评分,然后设定一系列权重阈值进行二次特征筛选。使用Fisher线性判别分析(FLDA)对2种方法选择的特征子集进行分类。在2组脑机接口(BCI)竞赛数据集和1组实验室自采集数据集上进行实验,最高平均分类准确率分别为77.47%、76.11%、71.30%。实验结果表明,所提出的方法其分类性能优于现有的特征选择方法,而且特征选择时间也具有较大优势。  相似文献   

17.
谢华  王健  林鸿飞  杨志豪 《计算机工程》2012,38(1):195-196,210
基于质心的文本分类方法对模型较敏感,分类性能较差。为此,提出一种基于特征选择的类别质心向量构建方法FSCC。计算特征与类别之间的特征选择值,利用质心特征权重计算公式得到类别的质心向量,并采用非归一化的余弦相似度计算文档与质心间的距离,实现文本分类。实验结果表明,与基于质心的方法和支持向量机方法相比,FSCC方法的分类效果更好。  相似文献   

18.
基于粒度计算的特征选择方法   总被引:1,自引:0,他引:1  
从粒度计算的划分模型出发,重新定义了相容决策表的约简,并给出了一种新的基于粒度计算的属性约简算法.该算法以信息熵作为启发信息,通过逐渐增加属性构成条件属性集相对于决策属性的约简,再通过删除约简中的所有不必要属性,得到最小约简.该算法有效地降低了计算属性约简的时间复杂度,可以用于较大规模数据集的特征选择.在5个公开的基因表达数据集上的实验证明了该算法能找到高区分能力的特征子集.  相似文献   

19.
王宪辉  尹东  张荣 《计算机工程》2010,36(23):183-185
扩展传统的Mean Shift跟踪算法,使其能够实现特征和量阶自动选择。引入比率 对数图及互信息方差实现特征的自动选取,同时提出一种新的量化方法,能够更显著地区分目标和背景。实验结果表明,该算法在多场景下具有较好的鲁棒性并能提高跟踪精度,可以适应光线变化、背景干扰、被部分遮挡或色彩质量较差的情况。  相似文献   

20.
针对高维复杂的符号数据集在聚类中的聚类效果差和计算耗时过大的问题,首先提出了一种基于邻域距离的无监督特征选择算法,然后在选择到的特征子集上进行重新聚类,从而有效提高了聚类结果的精度,降低了聚类计算的计算耗时。实验结果表明,该算法可以找到有效的特征子集,提高数据集的聚类精度,降低面对高维复杂数据集聚类的计算耗时。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号