共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
胡颖 《计算机与数字工程》2013,41(3)
论文提出了一种基于信息增益改进的信息增益文本特征选择方法.首先对数据集按类进行特征选择,减少数据集不平衡性对特征选取的影响.其次运用特征出现概率计算信息增益权值,降低低频词对特征选择的干扰.最后使用离散度分析特征在每类中的信息增益值,过滤掉高频词中的相对冗余特征,并对选取的特征应用信息增益差值做进一步细化,获取均匀精确的特征子集.通过对照不同算法的测评函数值,表明论文选取的特征子集具有更好的分类能力. 相似文献
3.
一种基于聚类的文本特征选择方法 总被引:6,自引:0,他引:6
传统的文本特征选择方法存在一个共性,即通过某种评价函数分别计算单个特征对类别的区分能力,由于没有考虑特征间的关联性,这些方法选择的特征集往往存在着冗余。针对这一问题,提出了一种基于聚类的特征选择方法,先使用聚类的方法对特征间的冗余性进行裁减,然后使用信息增益的方法选取类别区分能力强的特征。实验结果表明,这种基于聚类的特征选择方法使得文本分类的正确性得到了有效的提高。 相似文献
4.
文本分类的特点是高维的特征空间和高度的特征冗余.针对这两个特点,采用χ+2统计量处理高维的特征空间,利用信息新颖度的思想处理高度的特征冗余,根据最大边缘相关的定义,将二者有机结合,提出一种基于最大边缘相关的特征选择方法.该方法可以在特征选择过程中减少大量的冗余特征.最后,在Reuters-21578 Top10和OHSCAL两个文本数据集上进行实验.实验结果表明,基于最大边缘相关的特征选择方法比χ+2统计量和信息增益两种特征选择方法更高效,并且能够提高nave Bayes,Rocchio和kNN 3种不同分类器的性能. 相似文献
5.
在文本分类领域中.目前较常用到的特征选择算法都是通过某种评价函数分别计算单个特征对类别的区分能力,仅仅考虑了特征与类别之间的关联性,而对特征与特征之间的关联性没有予以足够的重视.这导致了特征集往往存在着冗余。针对这一问题,提出一种新的用于文本分类的特征选择算法.它可以帮助选出区分能力强、弱相关的特征。经实验验证.该方法比传统的特征选择算法具有更好的性能。 相似文献
6.
7.
在数据分析中,特征选择可以用来降低特征的冗余,提高分析结果的可理解性和发现高维数据中隐藏的结构.提出了一种基于互信息的无监督的特征选择方法(UFS-MI),在UFS-MI中,使用了一种综合考虑了相关度和冗余度的特征选择标准UmRMR(无监督最小冗余最大相关)来评价特征的重要性.相关度和冗余度分别使用互信息来度量特征与潜在类别变量之间的依赖和特征与特征之间的依赖.UFS-MI同时适用于数值型和非数值型特征.在理论上证明了UFS-MI的有效性,实验结果也表明UFS-MI可以达到与传统的特征选择方法相当甚至更好的性能. 相似文献
8.
一种改进的文本分类特征选择方法 总被引:1,自引:0,他引:1
文本分类中特征空间的高维问题是文本分类的主要障碍之一。特征选择(Feature Selection)是一种有效的特征降维方法。现有的特征选择函数主要有文档频率(DF),信息增益(IG),互信息(MI)等。基于特征的基本约束条件以及高性能特征选择方法的设计步骤,提出了一种改进的特征选择方法SIG。该特征选择方法在保证分类效果的同时,提高了对中低频特征的偏向。在语料集Reuters-21578上的实验证明,该方法能够获得较好的分类效果,同时有效提高了对具有强分类能力的中低频特征的利用。 相似文献
9.
文本特征选择是文本分类的核心技术。针对信息增益模型的不足之处,以特征项的频数在文本中不同层面的分布为依据,分别从特征项基于文本的类内分布、基于词频的类内分布以及词频的类间分布等角度对IG模型逐步进行改进,提出了一种基于词频分布信息的优化IG特征选择方法。随后的文本分类实验验证了提出的优化IG模型的有效性。 相似文献
10.
随着WWW的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。基于向量空间的文本分类方法中,信息增益是一种有效的特征选择方法。本文改进信息增益的特征选择方法:降低负类对分类的贡献;改进特征项在类中的均匀程度对分类的贡献。实验结果表明,经过改进的信息增益的特征选择方法在分类效果上有显著的提高。 相似文献
11.
为降低文本特征空间维度,提高数据挖掘处理数据的效率,提出两阶段文本特征选择算法。结合方差和平均中位数2种方法构建高相关性的特征子集进行初步降维,并将其作为差分进化算法的初始特征种群。利用特征词的累计词频和文档频率设计适应度函数,将多个特征差向量和局部最优特征引入变异操作中,增加特征子集的扰动性,加快差分进化算法的收敛速度,获得最优特征子集。在WebKB和Reuters-21578数据集上进行实验,结果表明,该算法在准确率、召回率和F1值上均优于TDM5、MADAC等算法,能够降低文本特征空间的维度,提高文本聚类效果。 相似文献
12.
分析几种常见的特征选择评价函数,将权值计算函数应用于特征选择,提出一种新的基于改进TFIDF的文本特征选择评价函数,即TFIDF-Dac.它从提高特征项的类区分能力角度考虑,将特征项在类问的分布信息引入公式,弥补了传统的TFIDF的不足.实验测试表明,使用改进的特征选择方法能够有效提高文本分类的准确度. 相似文献
13.
传统文本分类中的文档表示方法一般基于全文本(Bag-Of-Words)的分析,由于忽略了领域相关的语义特征,无法很好地应用于面向特定领域的文本分类任务.本文提出了一种基于语料库对比领域相关词汇提取的特征选择方法,结合SVM分类器实现了适用于特定领域的文本分类系统,能轻松应用到各个领域.该系统在2005年文本检索会议(TREC,Text REtrieval Conference)的基因领域文本分类任务(Genomics Track Categorization Task)的评测中取得第一名. 相似文献
14.
Neural Processing Letters - Feature selection is one of the major aspects of pattern classification systems. In previous studies, Ding and Peng recognized the importance of feature selection and... 相似文献
15.
基于神经网络的特征选择与提取方法研究 总被引:1,自引:0,他引:1
特征选择的基本任务是如何从许多特征中找出那些最有效的特征,即研究如何把高维特征空间压缩到低维特征空间。特征选择在数据挖掘、图象处理、数据压缩、模式识别等诸多方面有广泛的应用,本文简介了神经网络的特征选择与提取方法。 相似文献
16.
17.
借鉴已有的特征选取方法和粗糙集相关理论,本文提出了一种改进的基于粗糙集理论的特征选择方法,其主要思想是通过构造粒度函数将其应用于特征在分类中的重要性度量和约简,最后通过实验验证了该方法是有效的,并能够显著降低文本特征维数,提高分类的效率和精度。 相似文献
18.
针对工业软测量中的非线性数据回归问题,提出一种基于特征向量提取的核回归建模方法.基于核函数非线性变换技术,建立非线性软测量模型-核回归模型.为了减少核回归模型中的优化参数,采用特征向量提取(FVS)算法选择核回归模型的特征向量,最后采用改进的粒子群优化算法估计模型参数.在工业数据上的应用结果说明了方法的有效性. 相似文献
19.
基于LBP-TOP、HOG-TOP、HIGO-TOP特征描述子的微表情识别方法通常提取到的特征向量维度较高,计算复杂度较大,运行时间较长,识别准确率较低。为此,提出一种基于信息增量(IG)特征选择的识别方法。运用IG特征选择方法对高维度特征向量进行降维,提高识别效率。运用支持向量机分类器的线性核、卡方核、直方图交叉核进行留一交叉验证,以完成分类任务。在SMIC和CASME2数据集上进行实验,结果表明,经IG选择后,特征向量在2个数据集上的识别准确率分别达到76.22%和73.68%,分类所需时间分别缩短为原方法的3.67%和3.64%,验证了该方法的有效性。 相似文献