首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EU has set maximum limits for the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON). The maximum permitted level decreases from unprocessed wheat, through intermediary products, e.g. flour, to finished products such as bakery goods and breakfast cereals. It is, therefore, important to understand the effects of processing on the mycotoxin distribution in mill fractions. Between 2004 and 2007, samples were taken at commercial flour mills at various points in the milling process and analysed for trichothecenes and ZON. Samples with a range of mycotoxin concentrations harvested in 2004 and 2005 were processed in a pilot mill and the mycotoxins in the different mill fractions quantified. In the commercial samples, DON was the predominant mycotoxin with highest levels detected in the bran fraction. Analysis of the pilot mill fractions identified a significant difference between the two years and between mycotoxins. The proportion of DON and nivalenol in the mill fractions varied between years. DON and nivalenol were higher in flour fractions and lower in bran and offal in samples from 2004 compared to samples from 2005. This may be a consequence of high rainfall pre-harvest in 2004 resulting in movement of these mycotoxins within grains before harvest. There was no significant difference in the distribution of ZON within mill fractions between the two years. For DON, higher concentrations in the grain resulted in a greater proportion of DON within the flour fractions. Understanding the factors that impact on the fractionation of mycotoxins during milling will help cereal processors to manufacture products within legislative limits.  相似文献   

2.
The 2001 durum wheat crop grown in the Northern Plains was surveyed for microbial loads, mycotoxins, and quality. Correlations among these factors were identified. Effects of cleaning, milling, and pasta processing on microbial loads and deoxynivalenol (DON) concentrations were determined. Aerobic plate counts (APCs), mold and yeast counts (MYCs), internal mold infection (IMI), and internal Fusarium infection (IFI) were lowest in grain samples from Montana and highest in grain from northeastern North Dakota. DON and 15-acetyldeoxynivalenol (15-ADON) were not detected in samples from Montana. Nivalenol was not detected in any samples. DON in North Dakota samples ranged from none detected to 23 micrograms/g. 15-ADON was detected in a few North Dakota samples, with a maximum of 0.8 microgram/g. DON positively correlated with APCs, MYCs, IFI, damaged kernels, total defects, U.S. grade number, and tombstone kernel content and negatively correlated with test weight, vitreous kernel content, and kernel weight. APCs, MYCs, and DON concentrations were lower in semolina than whole grain. Processing semolina into spaghetti did not change DON concentrations. APCs for spaghetti were reduced 2.2 to 4.1 logs from those for semolina, whereas MYCs were reduced 0.1 to 1.7 log. Some APCs in durum flour and semolina were higher than certain industry specifications would allow, although other factors were acceptable. However, microbial loads in the spaghetti were all within specifications found in the available literature.  相似文献   

3.
The aim of this work was to investigate the distributions of deoxynivalenol, cadmium and lead in durum wheat milling fractions from industrial milling plants. The study focused on two milling technologies: conventional milling and debranning before milling. Initial analyses of samples of all raw materials showed contamination levels considerably lower than the limits imposed by the European Commission. Deoxynivalenol, cadmium and lead showed rather similar patterns of distribution. Semolina had lower, although not significant levels of these undesirable substances than unprocessed wheat grain; in contrast, marked concentration factors were found for the contaminants in shorts (middlings) and flour shorts. Debranning technology resulted in higher contamination levels in products intended for animal feed than conventional milling. The difference was statistically significant for deoxynivalenol and lead contamination of the shorts (middlings) fraction. As the outer parts of the kernel are generally considered richer in inorganic elements and moulds, Pearson's correlation was performed to investigate the relationship between the crude fibre contents of the different fractions, adopted as bran marker, and contaminant levels. Positive correlations were found for each of the three contaminants, although the correlation coefficients were not very high, demonstrating that crude fibre likely does not constitute a good marker for describing contaminants repartitioning in milling fractions when the levels of these substances are low.  相似文献   

4.
Deoxynivalenol (DON) together with two acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) occurs in cereal grains and their products. Co-occurrence of DON and acetylated derivatives in cereal grain is detected worldwide. Until now, DON and its derivatives have been considered equally toxic by health authorities. In this study, we analysed 103 samples of spring wheat grain, originating from the fields of different production systems in Lithuania, for the co-occurrence of type-B trichothecenes (DON, 3-ADON, 15-ADON). The samples were classified according to the production system—organic, sustainable and intensive. Mycotoxin levels in the spring wheat grain samples were determined by the HPLC method with UV detection. The type-B trichothecenes were found to be present at higher concentrations in the grain from the intensive production system. Eighty-one percent of the spring wheat grain samples from the intensive production system were co-contaminated with a combination of DON+3-ADON+15-ADON, 1% with DON+3-ADON. Additionally, DON+15-ADON and DON were found in 5% and 10% of the tested samples, respectively. Two percent of the samples were free from mycotoxins. In the grain samples from the sustainable production system, DON and a combination of DON+3-ADON showed a higher incidence – 47% and 23%, respectively. The samples with a combination of DON+3-ADON+15-ADON accounted for 18%. Completely different results were obtained from the analyses of organic grain samples. A large number of the organic spring wheat grain samples were contaminated with DON+3-ADON (55%) or DON (36%). The combination of DON+3-ADON+15-ADON was not present, while DON+15-ADON was present in 9% of the samples tested. The production systems did not lead to significant differences in mycotoxin levels, although a trend toward higher incidence and higher contamination was observed for the samples from the intensive and sustainable production systems.  相似文献   

5.
The fate of the Fusarium mycotoxins deoxynivalenol and nivalenol during the milling of Japanese wheat cultivars artificially infected with Fusarium was investigated. Grain samples with different mycotoxin concentrations were milled using a laboratory-scale test mill to produce eight fractions: three breaking flours (1B, 2B, and 3B), three reduction flours (1M, 2M, and 3M), wheat bran, and wheat shorts. Patent flour for human consumption was made from the 1B, 2B, 1M, and 2M flours, and low-grade flour was made from 3B and 3M flours. The four resulting samples (patent flour, low-grade flour, bran, and shorts) were analyzed for deoxynivalenol and/or nivalenol with an in-house validated analytical method using high-performance liquid chromatography with UV absorbance detection. In samples with different mycotoxin concentrations, the distribution of those toxins differed among the milling fractions. Grains with a lower level of contamination produced bran and shorts samples with a high relative concentration of nivalenol. A high percentage of nivalenol was found in patent flour, followed by bran. Contrary to the less-contaminated sample, the concentration of nivalenol in moderately contaminated grain was high only in the shorts sample. The highest percentage of deoxynivalenol and nivalenol was observed in the patent flour. The results of this study indicate that the distribution of deoxynivalenol and nivalenol in milled Japanese wheat could be influenced by the contamination level of the original grain, and the milling process is not always effective for removal of toxins from wheat grains.  相似文献   

6.
Wheat grain contamination with toxigenic Fusarium spp. is of great economic concern to cereal producers and to the grain processing industry and is of great relevance for the quality and safety of the final products. In particular, the bread production chain can potentially be a vehicle for mycotoxin ingestion above the tolerable total daily intake. A quantitative polymerase chain reaction‐based analytical approach has been developed as a possible tool to estimate and control the risk of mycotoxins, particularly deoxynivalenol (DON). This DNA‐based analytical method has been applied to detect and quantify contamination levels of Fusarium graminearum and Fusarium culmorum in naturally infected wheat grain samples. The persistence of Fusarium contamination was also detected along the bread production chain in wholemeal, flour and bread. A significant correlation was found between Fusarium DNA and DON concentration in all samples.  相似文献   

7.
Three hundred kilograms of durum wheat of two cultivars ‘primadur’ (small kernel) and ‘ardente’ (large kernel) treated with pirimiphos-methyl (PMM) at 10 mg kg−1 were processed into fractions under standard conditions of milling to evaluate the fate and distribution of the residues in the milling fractions. Half the quantity of each variety was processed 7 d after the treatment, and the second half was stored for 127 d in controlled conditions before milling. The residue content in treated grain just before milling as well as in the final 18 milling fractions was determined by GC–MS analysis carried out on crude methanol extracts. During the 127-d storage period, nearly 65% of the PMM initial content was degraded. With the first sub-sample (7 d after treatment), the amount of residue in the processed fractions compared to the total amount in grain prior to milling was reduced by 12.3% and 26.5% for primadur and ardente varieties, respectively. With the 2nd sub-sample (127 d after treatment), the residue losses induced by the milling operations were 21.8% and 24.6%, respectively. Between 79.5% and 74.5%, respectively, of the total amount of recovered residues after milling was concentrated in the bran layers 7 d after treatment and 79.5% and 80.2% after 127 d. The translocation of the residues during milling from the bran-coat to the inner endosperm was significant in all cases: a fraction from 14% to 20% of the total residue content was drawn into the semolina. An interaction between the milling operations and the residue translocation was observed. The greater translocation observed with the ardente cultivar was related to the specific characteristics of the bran-coat structure of this durum variety. With the grain batch held for the longer term, a lower rate of translocation was observed as the level of PMM fell to about a third of that at 7 d. A scenario of the behaviour of the residues during milling in relation to processing and grain conditions was proposed for the assessment of the maximum amount of PMM residues in the premium semolina fractions. The impact for consumer's health of this residual contamination of semolina used for food purposes is discussed.  相似文献   

8.
A fluorescence polarization immunoassay previously described for deoxynivalenol (DON) screening in wheat was optimized for the rapid quantification of DON in durum wheat kernels, semolina, and pasta. A background signal was observed in both spiked and naturally contaminated samples, strictly depending on the testing matrix. After subtracting the background DON level for durum wheat (0.27 microg of DON per g), semolina (0.08 microg of DON per g), and pasta (0.04 microg of DON per g), an accurate quantification of DON was possible at levels greater than 0.10 microg/g for all matrices. Average recoveries from spiked samples (0.25 to 1.75 microg/g) were 98, 102, and 101% for wheat, semolina, and pasta, respectively. Comparative analyses of 35 naturally contaminated durum wheat samples, 22 semolina samples, and 26 pasta samples performed by both the fluorescence polarization method and high-pressure liquid chromatography/immunoaffinity cleanup showed a good correlation (r > 0.995). The fluorescence polarization method showed better accuracy and precision with respect to the high-pressure liquid chromatography method and is suitable for the rapid and quantitative determination of DON in durum wheat-based products at levels foreseen by existing or coming international regulations.  相似文献   

9.
Fusarium head blight is a fungal disease causing yield losses and mycotoxin contamination in wheat and other cereals. Wheat kernels (cultivar Ritmo) were sampled in 2001, 2002, 2003, and 2006 and Fusarium-damaged kernels were separated from sound grain based on visual assessment. Subsequently, grain lots containing 0, 20, 40, 60, 80, and 100% of damaged kernels were compiled. Each lot was split and the spectrometric reflectance (wavelengths 350-2500 nm) was measured using subgroup one, while the concentration of the mycotoxin deoxynivalenol (DON) was determined by high-performance liquid chromatography in subgroup two. DON concentrations in batches classified as sound were not significantly different from 0. Estimating DON contents from the percentage of Fusarium-damaged kernels was impeded by vast variability, resulting in a coefficient of determination of 0.49. Using spectrometric data subjected to partial least square regression allowed estimating DON contents with higher accuracy, in particular at elevated percentages of damaged kernels. The coefficient of determination was 0.84 for the relationship between DON contents estimated based on spectrometric data and the DON contents measured. The intercept of a regression line fitted through a plot of estimated versus measured DON contents was 0.89 ± 3.61 mg/kg. Since intercept + standard error was larger than the actual legal limit (1.25 mg DON per kg dry grain in the European Union), the spectrometric procedure was still not precise enough to allow a reliable separation of grain samples with DON contents below 1.25 mg/kg from samples with DON contents above the limit. However, spectrometric data also allowed estimating the DON content of the average damaged kernel within a given lot composed of sound and damaged kernels, which is probably the reason for the reduction of the fraction of unexplained variance by 35% compared to the visual approach and illustrates that spectrometric approaches can make a contribution to reducing DON contents of wheat grain.  相似文献   

10.
Mycotoxins are fungal metabolites commonly present in food and constituting a potential threat to food safety. Total aflatoxins (AFT), ochratoxin A (OTA) and deoxynivalenol (DON) are among the most widespread mycotoxins. We assessed the occurrence of AFT, OTA and DON in some foodstuffs available on the Lebanese market and evaluated the potential risk to the health of children and teenagers in Beirut from dietary exposure to these mycotoxins. Analytical data on the contamination of raw and processed cereals and cereal-based products, pulses and nuts were collected. The mean levels of AFT, OTA and DON were calculated for each food items. Levels of dietary exposure were obtained by combining food consumption data with the mean mycotoxin levels, adopting a deterministic approach. Intakes were calculated for average and high consumers (75th and 95th percentile) among children and teenagers, and compared with the provisional tolerable daily intake (PTDI) or provisional tolerable weekly intake (PTWI) of the respective mycotoxin. The results showed that mycotoxin levels in the food samples were generally below national/European maximum limits. However, high levels of AFT, OTA and DON were found in some samples of nuts, biscuits and bread. The calculated intake for AFT exceeded its respective PTDI in all groups by a factor ranging from 3 to 7. The intakes of OTA and DON were found to be below the threshold of toxicological concern established for these mycotoxins by international expert groups, although the intake of DON in children at the highest percentile (P95) was close to its PTDI. Our study highlights the need to reconsider the maximum permissible levels of total aflatoxins in some foodstuffs and to establish regulatory guidelines regarding OTA and DON. The results also emphasise the need for routine monitoring of the levels of mycotoxin contamination in foodstuffs that are highly consumed by Lebanese children and teenagers, i.e. cereals and cereal-based products.  相似文献   

11.
In Tunisia, barley is commonly used in human consumption in a variety of food forms. In this regard, a high quality of this agricultural product is always demanded by consumers. A survey of the natural occurrence of deoxynivalenol (DON), the most common Fusarium mycotoxin in small grain cereals, in barley harvested in the main cropping regions in Northern Tunisia in the 2009 harvest was conducted. A total of 72 samples were analysed for DON using high-performance liquid chromatography (HPLC) with a UV visible detector set at 220?nm. Between 36% and 100% of the samples were positive for DON with averages ranging from 1.2 to 2.4?mg?kg?1. A positive correlation between DON levels and temperature was seen; on the other side no correlation between DON contents and rainfall was observed. In this study we notably showed the effect of regions on DON contamination.  相似文献   

12.
The effect of processing on mycotoxin content in milling fractions has been investigated in 10 samples of durum wheat contaminated with T-2 and HT-2 toxins at levels ranging from 97 to 5,954 μg/kg (sum of T-2 and HT-2 toxins). Either naturally contaminated samples or samples artificially inoculated with Fusarium sporotrichioides under field conditions were used. A method based on liquid chromatography-tandem mass spectrometry coupled with immunoaffinity column cleanup was validated in-house for the simultaneous analysis of both toxins in a variety of matrices, including uncleaned wheat, cleaned wheat, screenings, bran, red dog, fine middlings, and semolina. Mean recoveries from samples spiked with T-2 and HT-2 toxins at levels of 100 μg/kg ranged from 85 to 107%, with relative standard deviations (RSDs) lower than 14%. The milling process led to an increase of T-2 and HT-2 toxin contents up to 13- and 5-fold in screenings and bran, respectively, compared with occurrence in the uncleaned wheat; however, an overall reduction of T-2 and HT-2 toxins by 54% (RSD, 20%) and 89% (RSD, 3%) was observed in cleaned wheat and in semolina, respectively.  相似文献   

13.
ABSTRACT

The aim of this study was to model fusarium mycotoxins against agronomic factors in order to identify those that have the greatest impact on mycotoxin levels in harvested wheat. To achieve this, fusarium mycotoxins levels were monitored, and associated agronomic data collected, in approximately 150 English wheat fields/year between 2006 and 2013. Results showed large seasonal variation in fusarium mycotoxin levels, with high levels in 2008 (13% and 29% exceeding legal limit for unprocessed soft wheat intended for human consumption for deoxynivalenol (DON) and zearalenone (ZON), respectively) and 2012 (10% and 15% exceeding legal limit for unprocessed soft wheat intended for human consumption for DON and ZON, respectively) and low levels in 2006 and 2011 (no samples exceeding legal limits for unprocessed soft wheat intended for human consumption for DON or ZON). Analysis of agronomic factors identified previous crop, cultivation and variety as the greatest risk factors. The greatest risk of mycotoxin development in grain was following maize as a previous crop and minimum tillage. The combined effect of these factors gave respective average DON and ZON levels 20 and 14 times higher than other previous crop and cultivation combinations. A newly quantified risk factor was harvest date. A 1-month delay in harvest resulted in a 10 and 25 times greater mean DON and ZON concentration, respectively, when compared to crops harvested around the long-term regional average harvest date. These results highlight the highly seasonal variation in fusarium mycotoxins in wheat and the agronomic factors that should be avoided to minimise fusarium mycotoxin levels in harvested wheat.  相似文献   

14.
The presence of trichothecenes (deoxynivalenol, 3-acetyl deoxynivalenol, 15-acetyl deoxynivalenol, nivalenol, neosolaniol and diacetoxyscirpenol) was studied in 50 samples of Argentinean beer (nine different brands). Gas chromatography with electron capture detector was used for identification and quantification of these mycotoxins. The only mycotoxin detected was deoxynivalenol (DON). It was present in 44% of the samples, 18% were contaminated with more than 20ng/ml. Toxin levels ranged from 4 to 221ng/ml in positive samples. This is the first report on DON contamination of Argentinean beer. The estimate of probable daily intake (PDI) of DON from beer consumption in Argentina does not indicate a health hazard, but it has to be taken into account in calculations of total DON exposure in the population.  相似文献   

15.
Results from the Bavarian Health and Food Safety Authority on contamination of cereals and cereal products from the Bavarian market with the mycotoxins deoxynivalenol (DON), zearalenone (ZEA), and ochratoxin A (OTA) and of maize meal and semolina with fumonisins (FUM) in the year 2004 are presented. Contamination rates and levels of DON, ZEA, and OTA were low and did not exceed the maximum levels. However, a 92% contamination rate and high levels of FUM in maize meal and semolina were measured. Contamination levels of mycotoxins are discussed and evaluated with respect to possible health implications for consumers.  相似文献   

16.
Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5 microg kg(-1). We were able to predict DON levels in the naturally contaminated barley samples using the volatile compounds detected and quantified by either GC-MS or the electronic nose. Pentane, methylpyrazine, 3-pentanone, 3-octene-2-ol and isooctylacetate showed a positive correlation with DON, while ethylhexanol, pentadecane, toluene, 1-octanol, 1-nonanol, and 1-heptanol showed a negative correlation with DON. The root mean square error of estimation values for prediction of DON based on GC-MS and electronic nose data were 16 and 25 microg kg(-1), respectively.  相似文献   

17.
The occurrence of the mycotoxins deoxynivalenol (DON) and ochratoxin A (OTA) in the winter wheat of 1997 and 1998 grown under organic farming conditions was investigated using ELISAs (R-Biopharm®) for quantification. The influence of delayed drying of the grain after harvest on the development of DON and OTA was determined in storage trials (moisture: 17% and 20%; temperature: 20°C; duration: four and six weeks). The Tox5 PCR assay was used both to detect Fusarium species with the potential to produce trichothecenes and as a measure of their relative DNA content during the storage trials. The intensity of the PCR signals was correlated with the DON concentration. Fusarium species were identified microscopically by standard methods. All the freshly harvested grain samples were contaminated with DON and showed further increases in the DON concentration during storage. OTA contamination was found in 14.3% of the 1997 samples and in 24.1% of the 1998 samples. OTA increased during storage trials of the 1997 samples but not in the 1998 samples.  相似文献   

18.
Fusarium spp. invasion causes head blight, a destructive disease in the world's main wheat-growing areas, and deoxynivalenol (DON) and zearalenone (ZEA) contamination in cereal-based products. No data are available on the relationship between Fusarium spp. on commercial wheat samples in Mexico City and the presence of mycotoxins. A total of 30 wheat samples were subject to a PCR method involving genes of the trichothecene and zearalenone biosynthesis pathways to detect the presence of Fusarium. Detection and quantification of DON and ZEA was performed using liquid chromatography coupled to UV detection. PCR indicated the presence of the Tri5 and PKS4 genes in 16.7 and 23.3% of samples, respectively. DON and ZEA contamination was found in 51.2 and 71.4% of samples, respectively, where a positive amplification was obtained. This work presents up-to-date information on mycotoxin contamination in Mexico, where improved contamination/exposure data and firm control/monitoring measures are needed.  相似文献   

19.
An ultra-performance liquid chromatography (UPLC®) method has been developed for the simultaneous determination of deoxynivalenol (DON) and nivalenol (NIV) in wheat. Ground sample was extracted with water and the filtered extract was cleaned up through an immunoaffinity column containing a monoclonal antibody specific for DON and NIV. Toxins were separated and quantified by UPLC® with photodiode-array detector (λ?=?220 nm) in less than 3 min. Mean recoveries from blank wheat samples spiked with DON and NIV at levels of 100–2,000 μg/kg (each toxin) ranged from 85 to 95 % for DON and from 81 to 88 % for NIV, with relative standard deviations less than 7 %. Similar recoveries were observed from spiked samples when methanol/water (80:20, v/v) was used as extraction solvent. However, by using a wheat sample naturally contaminated with DON and NIV, the one-way analysis of variance (Student–Newman–Keuls test) between different extraction solvents and modes showed that water extraction provided a significant increase (P?<?0.001) in toxin concentrations (mean values of six replicate analyses) with respect to methanol/water (80:20, v/v). No significant difference was observed between shaking (60 min) and blending (3 min). The limit of detection (LOD) of the method was 30 μg/kg for DON and 20 μg/kg for NIV (signal-to-noise ratio 3:1). The immunoaffinity columns showed saturation of DON/NIV binding sites at levels higher than 2,000 ng in blank wheat extracts spiked with the corresponding amount of mycotoxin, as single mycotoxin or sum of DON and NIV. The range of applicability of the method was from LOD to 4,000 μg/kg, as single mycotoxin or sum of DON and NIV in wheat. The analyses of 20 naturally contaminated wheat samples showed DON contamination in all analyzed samples at level ranging from 30 to 2,700 μg/kg. NIV was detected in two samples at negligible toxin levels (up to 46 μg/kg). This is the first UPLC® method using immunoaffinity column cleanup for the simultaneous and sensitive determination of DON and NIV in wheat.  相似文献   

20.
Beer is one of the most popular beverages worldwide. Malted cereal grains are among the basic ingredients and hence mycotoxin contamination might occur. Previous studies reported the presence of the Fusarium mycotoxins deoxynivalenol (DON) and 3-acetyl-deoxynivalenol (3ADON), as well as of the masked mycotoxin deoxynivalenol-3-glucoside (D3G) in beer. In the present survey, 374?beer samples from 38?countries with a focus on Austrian (156) and German (64) beers were analysed for the presence of D3G, DON and 3ADON. Beers were assigned to the following six categories: pale (217), wheat (46), dark (47), bock (20), nonalcoholic beers (19) and shandies (25). In total, 348 and 289 beers (93 and 77%, respectively) contained D3G and DON at the levels above the limit of detection, whereas 3ADON was not detected in any of the samples. Average concentrations of all beers were 6.9?µg?L?1 for D3G and 8.4?µg?L?1 in the case of DON. Nonalcoholic beers and shandies showed the lowest contaminations, 1.5 and 3.2?µg?L?1 for D3G and 2.7 and 4.4?µg?L?1 for DON, respectively. In bock beers characterised by a higher gravity, a significant trichothecene load of 14.8?µg?L?1 D3G and 12.4?µg?L?1 DON was found. The highest contamination (81?µg?L?1 D3G, 89?µg?L?1 DON) was detected in a pale beer from Austria, underlining the importance of this study for food safety. The molar D3G to DON ratio ranged between 0.11 and 1.25 and was 0.56 on average. Concluding, the average contamination of beer is not of toxicological concern for moderate beer drinkers. However, in the case of heavy beer drinkers, beer consumption may considerably contribute to the overall intake of DON, which might even lead to exceeding the maximum tolerable limits established for this Fusarium toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号