首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
压裂过程中压裂液流体在泵入所压开裂缝过程中的压力是诊断、分析压裂施工效果及裂缝性质的重要信息,而压裂液流过措施井的射孔孔眼时的压降对裂缝中的压裂压力分析有着一定的影响。本文应用非牛顿流体的基本特性和研究方法,基于管流中液体流动的分析思路,对压裂过程中泵入流体在射孔孔眼中流动的压力损失的进行理论计算;对不同的压裂液流体在孔眼处的压降损失与射孔段的密度、射孔孔眼的孔径的关系做了定性分析;同时对压裂液流变性、舍砂液的支撑剂浓度等对所孔眼处压降损失的影响进行了计算分析。所得到的分析结果从理论上给出了压裂液在射孔孔眼处的压力损失的影响规律。  相似文献   

2.
压裂液流经射孔眼处的压力损失对压裂过程中的压力监测及解释有着重要影响。采用非牛顿流体力学理论和有限元法,建立了压裂液流经射孔井眼处的力学模型,对压裂过程中泵入流体在射孔孔眼中流动特性进行了数值模拟,得到了压裂液流经射孔眼后流体特性的变化规律。研究了不同压裂液流变性、含砂液的支撑剂浓度对孔眼处压降损失的影响,以及压裂液流体在孔眼处的压降损失与射孔密度、孔眼直径及射孔深度的关系,定量给出了压裂液流经射孔眼处的压力损失,为水力压裂工艺的设计及过程中的压力监测与诊断奠定基础。  相似文献   

3.
为确定海上疏松砂岩高渗透条件下水力喷射孔内流体增压特性是否满足岩石定点起裂条件,采用了计算流体力学方法,基于达西定律推导出速度与渗透率关系方程,建立了考虑岩石孔眼边界高渗条件下水力喷射孔眼内流体动力学模型,实验验证模型可靠,得出了地层渗透率、喷嘴压降、环空围压等关键参数对孔内流体增压的影响规律。结果表明,疏松砂岩高渗透性是降低其水力喷射压裂水动力封隔能力的关键因素,孔内流体增压值随储层渗透率升高呈现非线性递减;喷嘴压降与孔内流体增压值呈线性增加关系,但孔内流体增压值的增长斜率随储层渗透率升高而降低;环空围压对孔内流体增压值无显著影响;敏感性分析表明,影响孔内流体增压的参数排序:储层渗透率>喷嘴压降>环空围压。研究结果可为海上水力喷射压裂水力学参数优化设计提供理论依据。  相似文献   

4.
砾石充填防砂井产能预测方法   总被引:9,自引:1,他引:8  
流体从砾石充填防砂井供给边缘到井筒的流动分为4部分:从供给边缘至井筒的平面径向流,射孔孔眼附近的球面向心流,通过射孔孔眼的单向流,由射孔孔眼到筛管的发散流。建立了计算各部分单相渗流的流动阻力数学模型,并考虑紊流对井筒附近流动阻力影响。对模型求解,研究影响产能的敏感性参数。对胜利油田某砾石充填防砂井产能计算的结果表明:按单向流、径向流及发散流计算井筒内流动阻力的结果差别较大,仅用单相流或径向流模型计算井筒内压降有一定误差;防砂井压降主要出现在射孔孔眼内及其附近,孔眼内填满地层砂时孔眼内的压降是总压降的48%,而填满砾石时是总压降的29%,将每个孔眼填满砾石是提高防砂井产能的根本保证。图1表2参10  相似文献   

5.
气井水平井防砂产能预测与评价模型   总被引:1,自引:1,他引:1  
给出了带表皮系数的气井水平井基本产能公式的统一形式.将防砂气井水平井中流体由远处地层到井筒内所经的区域划分为管外环形带和射孔压实带、射孔孔眼充填带和管内充填带等几个区域,可以用上述区域的特定组合来表达目前水平井防砂前后的渗流阻力区域.根据所假设的物理模型,推导了上述各区域的气体流动层流和紊流压降及表皮系数的计算公式,并给出了气井水平井不同防砂方式下总表皮系数和产能比的计算模型.通过实例分析了各渗流阻力区表皮系数的相对大小,分析了射孔参数、充填渗透率等对防砂气井水平井产能的影响规律,并提出了提高气井水平井防砂产能比的基本途径.  相似文献   

6.
运用计算流体力学(CFD)三维数值模拟方法比较了普通喷嘴结构和新型整流喷嘴结构对蒸汽喷射器操作性能的影响,并通过改变整流管长度和整流喷嘴出口位置,看其对喷射系数的影响。结果表明,在同等操作条件下,新型整流喷嘴结构能显著的提高蒸汽喷射器的喷射系数。并有一最佳整流管长度,在此长度下喷射系数可达最大。这种新型整流喷嘴结构可以有效地改善因工作流体的负荷降低而造成的喷射器操作性能降低,提高了设备运行的稳定性,节省了工作蒸气耗量。  相似文献   

7.
采用水平井开发有水气藏时,由于水平井中复杂的两相渗流规律以及水平井筒中特殊的流动状态,使得当流体从孔眼流入时会对水平流动产生显著影响,造成常规水平圆管气水两相流动规律不适用,其突出表现为流动中的压降变化。为了探索水平井筒气水两相流动压降分布规律,运用划分微元段的思想,建立了水平段一维混合流动井筒压降计算模型,在此基础上建立了水平气井携液模型,并采用Fluent流体仿真软件模拟气水同产水平井筒内的混合流动。研究表明,随着主流流速的增大,井壁摩擦压降、孔眼粗糙度压降以及混合压降都增大;井径的增加导致井壁摩擦压降和孔眼粗糙度压降都减小;而流体黏度只对孔眼粗糙度压降产生影响,增加黏度会引起粗糙度压降的增加。数值模拟结果表明,从井筒指端到跟端,流量增大,流速增大,孔眼入流会产生压力降,沿程总压力减小,符合井筒流动压降的原理。  相似文献   

8.
水平井射孔孔眼分布方式优化分析   总被引:11,自引:0,他引:11  
利用二维有限元的方法,根据热流场与渗流场的相似性,模拟水平井射孔完井后井筒及其周围流体流动的变化情况。在考虑井筒压降的情况下,研究射孔孔眼分布对水平井产能和井筒内流体流速剖面的影响。分析的孔眼分布类型有:沿井筒孔眼呈均匀分布、孔眼间距呈递增的等差数列分布、孔眼间距呈递减的等差数列分布、孔眼呈正态分布四种。分析结果有助于优化水平井射射孔孔眼分布来获取最大的水平井产能或均匀的渗流剖面。  相似文献   

9.
锥形喷嘴流量系数及水力参数的理论计算方法   总被引:12,自引:0,他引:12  
通过对锥形喷嘴内流动阻力的分析,推导出锥形喷嘴流量系数的理论计算公式,该公式考试喷嘴结构和流体物理性质及流态的影响,克服以前靠经验取值的不足,具有较为广泛的适用性,计算结果与实验结果基本一致,误差在2.6%以内,并给出喷嘴水力参数和射流水力参数的计算公式,为喷射钻井等工作提供了理论依据。  相似文献   

10.
水力喷砂射孔参数优化室内实验研究   总被引:1,自引:0,他引:1  
为了更有效地将水力喷砂射孔压裂技术应用于油藏开采中,对水力喷砂射孔参数进行室内实验研究。研究主要包括对不同岩样强度下喷射速度、射孔时间、喷嘴尺寸以及流体介质的优选。实验表明:喷射速度越高,射孔深度越深,同时喷嘴磨损程度增加;喷嘴尺寸越大,射孔效果越好;喷射速度越高,所需最佳喷射时间越短;喷射液体类型对射孔深度影响不大。该实验研究为水力喷砂射孔压裂工艺中关键参数的选取提供了重要依据。  相似文献   

11.
高温流体通过喷嘴是节流流动的过程,会引起流体内部温度的变化,将影响高温射流冲击力与热裂解效应等。应用超临界水物性方程与焦汤系数的定义公式,推导出了射流通过喷嘴过程的焦耳汤姆逊系数的求解公式,并编制程序迭代求解,得到不同参数条件下焦耳汤姆逊系数分布特性与变化规律,并采用焦汤系数计算公式,计算得到不同参数下过喷嘴节流过程中降低温度值的变化规律。结果表明,在25~65 MPa和650~1 000 K的条件下,焦耳汤姆逊系数为正,随着反应腔内温度的增加,焦耳汤姆逊系数先增大后减小,在文中条件下的最大值为4.92;而随着反应腔内压力的增加,焦耳汤姆逊系数降低,在65 MPa,650 K条件下取得最小值0.22。焦汤效应的最大值均出现在过热蒸汽区,且随着温度的增加,最大值偏离分界线。在射流喷射过程中,温度压力降低值不可忽略,文中条件下最大可达73.5 K,应当合理设置反应腔内温度压力值,降低高温射流通过喷嘴过程的温度损失。  相似文献   

12.
为了将不同射流方式应用于PDC钻头以改变井底流场,并给钻头提供设计依据,通过数值模拟和室内试验分析了反向射流对井底流场的影响规律,并对旋转射流的破岩能力进行了评价。结果表明:PDC钻头加装反向射流喷嘴之后,钻头破岩部位压力降低,并且压降随着反向射流喷嘴距钻头底部距离的增大而减小,随反向射流流量的增大而增大,上部钻井液液柱压力对压降影响不大;在相同压降或排量下,旋转射流较普通直射流有更好的破岩能力。根据试验结论研制出了反向射流与旋转射流组合的PDC钻头,并在坨747井进行现场试验。结果表明,坨747井采用组合射流PDC钻头后,与采用普通PDC钻头的邻井相比,钻速提高40%以上。这表明,将反向射流和旋转射流组合应用于PDC钻头,可以明显提高机械钻速。   相似文献   

13.
径向钻井高压水射流喷嘴内外流场分析   总被引:1,自引:0,他引:1  
径向钻井高压水射流技术目前在国内外得到了广泛应用。对射流喷嘴内、外流场进行数值模拟分析将为选择合理的喷嘴结构以及为高压水射流破岩的进一步研究奠定基础。根据射流动力学原理,建立了单喷嘴轴对称淹没射流破岩的物理模型和数学模型,运用Fluent软件对径向钻井高压水射流喷嘴内、外流场进行了数值模拟,并分析了在不同喷距和入口流量下喷嘴内、外流场的规律。分析结果表明,射流轴线上存在速度衰减性、圆柱段速度保持性和最大速度偏移性;当射流冲击到径向井底后,在井底壁面上产生水垫,对喷头的推进产生阻碍作用;在径向钻井高压水射流中会产生滞止现象,将不利于钻井过程中岩屑的快速移运。  相似文献   

14.
刘建林 《石油机械》2012,40(6):7-12
为探索更加合理的内喷孔结构形式,提出了一种新型内喷孔结构,并基于反循环钻头孔底流动模拟试验器与现有内喷孔结构进行了对比试验测试。运用CFD技术对内喷孔局部流场进行了数值模拟,揭示了不同类型内喷孔局部流场的流动特征,得出了新型内喷孔结构不同喷射角对其抽吸特性的影响规律。室内试验与数值模拟结果表明,新型内喷孔结构有利于反循环的形成,更有利于改善和提高专用反循环钻头(特别是大直径反循环钻头)的性能。  相似文献   

15.
考虑非达西渗流的底水锥进临界产量计算模型   总被引:1,自引:0,他引:1  
底水锥进是底水气藏开发的重要问题。有关临界产量计算模型的物理模型一般假设地层流体为达西渗流,忽略非达西渗流压降。对于高产气井,近井地带流体渗流速度很大,非达西渗流阻力不可忽略。笔者在临界产量计算模型中考虑高速非达西渗流对底水锥进的影响,引入拟表皮系数,建立了考虑非达西渗流的底水锥进临界产量计算模型,计算中避免了非达西渗流半径的复杂计算过程。为量化非达西渗流的影响,应用数值模拟方法,通过建立高渗、中渗、低渗底水气藏数值模型,模拟产能试井过程并建立产能方程,计算了考虑非达西渗流的底水锥进临界产量。结果表明:低渗气藏非达西渗流对临界产量计算结果的影响可以忽略;当渗透率为30 mD、射孔厚度为208.3m、避水高度为31 m时,未考虑非达西渗流的临界产量误差为14.46%,非达西渗流影响不可忽略。因此当渗透率大于30 mD时,应选用考虑非达西渗流的底水锥进临界产量计算模型,更符合实际储层流体渗流规律。  相似文献   

16.
为提高PDC钻头钻进水平段时的井底射流辅助破岩能力,开展了叶轮式旋转射流喷嘴的射流特性研究。利用k-ε双方程标准湍流模型,对叶轮式旋转射流流场进行了数值模拟,并采用旋流强度和流量系数评价了射流破岩能力。数值模拟结果表明,叶片扭曲角为115°~140°、直柱段无因次长度为0.6~0.8、收缩角为60°~70°时,流量系数和旋流强度可取得最佳值,射流破岩能力最强。根据不同喷距下的旋转射流破岩试验结果,分析了叶轮式旋转射流喷嘴的破岩特性,结果表明,同压降下叶轮式旋转射流破岩直径是普通直射流的近3倍,且喷距在7~11倍喷嘴出口直径时破岩直径最大。研究结果表明,叶轮式旋转射流喷嘴的破岩能力优于普通直射流喷嘴,且通过优化叶轮式旋转射流喷嘴几何参数可提高其破岩能力,加强井底清岩和辅助破岩效果,提高PDC钻头的破岩效率。   相似文献   

17.
为了对径向钻井倾斜井底高压水射流的流场进行研究,建立了三维单喷嘴水射流井底模型,采用Fluent软件对模型的流场结构进行了数值模拟分析。分析结果表明,径向钻井高压水射流喷嘴外部流场中存在"负压效应"和"水垫现象",负压的存在有利于射流从喷嘴内部流出,水垫会对喷头的推进产生阻碍作用;当径向钻井临时井底倾斜角度为0°时,射流到达井底后沿井底壁面中心向外对称流动,但随着井底墙壁倾斜角度的增大,由于倾斜井底的引流作用,大部分流体会沿着井底倾斜的方向流动,并且沿倾斜方向的流速较大;径向钻井中,如果井底是倾斜的,则沿着井底倾斜方向的压力比井底另一侧高。  相似文献   

18.
For improving the hole-enlarging capability, roundness and rock-breaking efficiency of the nozzle in radial jet drilling, a new structure of self-rotating nozzle was put forward. The flow structure and rock-breaking features of the self-rotating nozzle were investigated with sliding mesh model and labortary tests and also compared with the straight and the swirling integrated nozzle and multi-orifice nozzle which have been applied in radial jet drilling. The results show that the self-rotating jet is energy concentrated, has longer effective distance, better hole-enlarging capability and roundness and impacts larger circular area at the bottom of the drilling hole, compared with the other two nozzles. Forward jet flow generated from the nozzle is peak shaped, and the jet velocity attenuates slowly at the outer edge. Due to periodic rotary percussion, the pressure fluctuates periodically on rock surface, improving shear and tensile failures on the rock matrix and thereby enhancing rock-breaking efficiency. The numerical simulation results of the flow structure of the nozzle are consistent with the experiments. This study provides an innovative approach for radial jet drilling technology in the petroleum industry.  相似文献   

19.
Jet pulse assembly is one of the main components of jet hydraulic oscillator. The pressure wave characteristics produced by jet pulse assembly have an important influence on the performance of the tool. In this paper, the structure and working principle of jet pulse assembly are studied, the mechanical analysis model of piston rod is established, the dynamic resistance ratio formula of jet pulse assembly is deduced, and the numerical simulation test of 89-mm jet pulse assembly structure parameters is carried out. The results show that the piston rod downward stroke is driven by both the jet element driving force and the throttle plate load driving force, and can stably descend. The driving force of the piston rod upward stroke jet element is opposite to the load acting force of the throttle disc, and the jet driving force needs to be greater than the load resistance of the throttle disc to stably ascend. The dynamic resistance ratio formula is deduced. When the area of the end of the piston rod is reduced, the resistance of the throttle disc is reduced and the jet power is increased, thus solving the problem of insufficient power of the piston rod in the upstroke and ensuring the normal operation of the tool. Ten groups of numerical simulation tests were carried out, and it was found that the pressure amplitude and pressure drop of the tool decreased significantly with the increase of the tool size, and the error between the numerical simulation value and the theoretical calculation value was less than 9%, which verified the correctness of the theory. It is suggested to select tools on site according to the drilling construction situation to ensure the drilling effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号