共查询到19条相似文献,搜索用时 46 毫秒
1.
最小二乘支持向量机不需要求解凸二次规划问题,通过求解一组线性方程而获得最优分类面,但是,最小二乘支持向量机失去了解的稀疏性,当训练样本数量较大时,算法的计算量非常大。提出了一种快速最小二乘支持向量机算法,在保证支持向量机推广能力的同时,算法的速度得到了提高,尤其是当训练样本数量较大时算法的速度优势更明显。新算法通过选择那些支持值较大样本作为训练样本,以减少训练样本数量,提高算法的速度;然后,利用最小二乘支持向量机算法获得近似最优解。实验结果显示,新算法的训练速度确实较快。 相似文献
2.
3.
本文针对传统的增量学习算法无法处理后采集到的样本中含有新增特征的问题,设计适应样本特征维数增加的训练算法。在基于最小二乘支持向量机的基础上,提出了特征增量学习算法。该算法充分利用先前训练得到的分类器的结构参数,仅对新增特征采用最小二乘支持向量机进行学习。实验结果表明,该算法能够在保证分类精度的同时,有效效地提高训练速度并降低存储空间。 相似文献
4.
最小二乘支持向量机的一种稀疏化算法 总被引:7,自引:0,他引:7
介绍了一种稀疏化最小二乘支持向量机的剪枝算法。由于支持值图谱中小的支持值所对应的训练样本在算法执行阶段所起的作用较小,所以删除它们不会引起性能的显著下降。仿真实验表明,该算法不但简单、易于实现,而且能够保持良好的分类性能。 相似文献
5.
6.
最小二乘支持向量机算法研究 总被引:17,自引:0,他引:17
1 引言支持向量机(SVM,Support Vector Machines)是基于结构风险最小化的统计学习方法,它具有完备的统计学习理论基础和出色的学习性能,在模式识别和函数估计中得到了有效的应用(Vapnik,1995,1998)。支持向量机方法一方面通过把数据映射到高维空间,解决原始空间中数据线性不可分问题;另一方面,通过构造最优分类超平面进行数据分类。神经网络通过基于梯度迭代的方法进行数据学习,容易陷入局部最小值,支持向量机是通过解决一个二次规划问题,来获得 相似文献
7.
为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法.按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型.以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好. 相似文献
8.
在线稀疏最小二乘支持向量机回归的研究 总被引:6,自引:0,他引:6
现有最小二乘支持向量机回归的训练和模型输出的计算需要较长的时间,不适合在线实时训练.对此,提出一种在线稀疏最小二乘支持向量机回归,其训练算法采用样本字典,减少了训练样本的计算量.训练样本采用序贯加入的方式,适合在线获取,并且该算法在理论上是收敛的.仿真结果表明,该算法具有较好的稀疏性和实时性,可进一步用于建模与实时控制等方面的研究. 相似文献
9.
10.
一种高效的最小二乘支持向量机分类器剪枝算法 总被引:2,自引:0,他引:2
针对最小二乘支持向量机丧失稀疏性的问题,提出了一种高效的剪枝算法.为了避免解初始的线性代数方程组,采用了一种自下而上的策略.在训练的过程中,根据一些特定的剪枝条件,块增量学习和逆学习交替进行,一个小的支持向量集能够自动形成.使用此集合,可以构造最终的分类器.为了测试新算法的有效性,把它应用于5个UCI数据集.实验结果表明:使用新的剪枝算法,当增量块的大小等于2时,在几乎不损失精度的情况下,可以得到稀疏解.另外,和SMO算法相比,新算法的速度更快.新的算法不仅适用于最小二乘支持向量机分类器,也可向最小二乘支持向量回归机推广. 相似文献
11.
Support vector machine (SVM) is a general and powerful learning machine, which adopts supervised manner. However, for many
practical machine learning and data mining applications, unlabeled training examples are readily available but labeled ones
are very expensive to be obtained. Therefore, semi-supervised learning emerges as the times require. At present, the combination
of SVM and semi-supervised learning principle such as transductive learning has attracted more and more attentions. Transductive
support vector machine (TSVM) learns a large margin hyperplane classifier using labeled training data, but simultaneously
force this hyperplane to be far away from the unlabeled data. TSVM might seem to be the perfect semi-supervised algorithm
since it combines the powerful regularization of SVMs and a direct implementation of the clustering assumption, nevertheless
its objective function is non-convex and then it is difficult to be optimized. This paper aims to solve this difficult problem.
We apply least square support vector machine to implement TSVM, which can ensure that the objective function is convex and
the optimization solution can then be easily found by solving a set of linear equations. Simulation results demonstrate that
the proposed method can exploit unlabeled data to yield good performance effectively. 相似文献
12.
最小二乘Littlewood-Paley小波支持向量机 总被引:11,自引:0,他引:11
基于小波分解理论和支持向量机核函数的条件,提出了一种多维允许支持向量核函数——Littlewood-Paley小波核函数.该核函数不仅具有平移正交性,而且可以以其正交性逼近二次可积空间上的任意曲线,从而提升了支持向量机的泛化性能.在Littlewood-Paley小波函数作为支持向量核函数的基础上,提出了最小二乘Littlewood-Paley小波支持向量机(LS-LPWSVM).实验结果表明,LS-LPWSVM在同等条件下比最小二乘支持向量机的学习精度要高,因而更适用于复杂函数的学习问题. 相似文献
13.
基于最小二乘支持向量机的机器视觉识别方法 总被引:1,自引:0,他引:1
为了解决传统的机器视觉识别技术识别精度低的难题,提出基于粒子群优化最小二乘支持向量机的机器视觉识别方法.首先,对机器视觉采集的图像进行特征提取;然后,利用特征数据建立基于粒子群优化最小二乘支持向量机的识别模型;最后,以红枣缺陷识别作为应用案例以证明该方法的有效性及优越性.分别采用人工神经网络、支持向量机与该方法进行对比... 相似文献
14.
回归最小二乘支持向量机的增量和在线式学习算法 总被引:40,自引:0,他引:40
首先给出回归最小二乘支持向量机的数学模型,并分析了它的性质,然后在此基础上根据分块矩阵计算公式和核函数矩阵本身的特点设计了支持向量机的增量式学习算法和在线学习算法.该算法能充分利用历史的训练结果,减少存储空间和计算时间.仿真实验表明了这两种学习方法的有效性. 相似文献
15.
针对开关磁阻电机(Switched Reluctance Motors)电磁特性的非线性造成其精确数学模型难以建立的问题,在获取准确磁特性样本数据基础上,采用最小二乘支持向量机(LS-SVM)的方法对开关磁阻电机非线性建模。仿真结果表明,该模型能够较好的反应SRM的磁特性。 相似文献
16.
17.
目前使用的已有SVM核函数,在分类中不能逼近某一L2(R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。 相似文献
18.
基于核的偏最小二乘特征提取的最小二乘支持向量机回归方法 总被引:4,自引:0,他引:4
提出了用核的偏最小二乘进行特征提取.首先把初始输入映射到高维特征空间,然后在高维特征空间中计算得分向量,降低样本的维数,再用最小二乘支持向量机进行回归.通过实验表明,这种方法得到的效果优于没有特征提取的回归.同时与PLS提取特征相比,KPLS分析效果更好. 相似文献
19.
Chuan Luo Chi Huang Jinde Cao Jianquan Lu Wei Huang Jianhua Guo Yun Wei 《Neural Processing Letters》2019,50(3):2305-2322
Accurate short-term traffic flow prediction plays an indispensable role for solving traffic congestion. However, the structure of traffic data is nonlinear 相似文献