共查询到20条相似文献,搜索用时 15 毫秒
1.
Gyoungwon Park Shchekin O.B. Huffaker D.L. Deppe D.G. 《Photonics Technology Letters, IEEE》2000,12(3):230-232
Data are presented on low threshold, 1.3-μm oxide-confined InGaAs-GaAs quantum dot lasers. A very low continuous-wave threshold current of 1.2 mA with a threshold current density of 28 A/cm2 is achieved with p-up mounting at room temperature. For slightly larger devices the continuous-wave threshold current density is as low as 19 A/cm2 相似文献
2.
Gokhale M.R. Studenkov P.V. Wei J. Forrest S.R. 《Photonics Technology Letters, IEEE》2000,12(2):131-133
We demonstrate high-performance Al-free InGaAsN-GaAs-InGaP-based long-wavelength quantum-well (QW) lasers grown on GaAs substrates by gas-source molecular beam epitaxy using a RF plasma nitrogen source. Continuous wave (CW) operation of InGaAsN-GaAs QW lasers is demonstrated at λ=1.3 μm at a threshold current density of only JTH =1.32 kA/cm2. These narrow ridge (W=8.5 μm) lasers also exhibit an internal loss of only 3.1 cm-1 and an internal efficiency of 60%. Also, a characteristic temperature of T0=150 K from 10°C to 60°C was measured, representing a significant improvement over conventional λ=1.3 μm InGaAsP-InP lasers. Under pulsed operation, a record high maximum operating temperature of 125°C and output powers greater than 300 mW (pulsed) and 120 mW (CW) were also achieved 相似文献
3.
High-performance 1.3-μm-emitting quantum-dot lasers were fabricated by self-organized growth of InAs dots embedded in GaInAs quantum wells. The influence of the number of quantum-dot layers on the device performance was investigated. Best device results were achieved with six-dot layers. From the length dependence; a maximum ground state gain of 17 cm-1 for six dot layers could be determined. Ridge waveguide lasers with a cavity length of 400 μm and high-reflection coatings show threshold currents of 6 mA and output powers of more than 5 mV. Unmounted devices can be operated in continuous wave mode up to 85°C. A maximum operating temperature of 160°C was achieved in pulsed operation for an uncoated 2.5-mm-long ridge waveguide laser 相似文献
4.
Lester L.F. Stintz A. Li H. Newell T.C. Pease E.A. Fuchs B.A. Malloy K.J. 《Photonics Technology Letters, IEEE》1999,11(8):931-933
The optical characteristics of the first laser diodes fabricated from a single-InAs quantum-dot layer placed inside a strained InGaAs QW are described. The saturated modal gain for this novel laser active region is found to be 9-10 cm-1 in the ground state. Room temperature threshold current densities as low as 83 A/cm2 for uncoated 1.24-μm devices are measured, and operating wavelengths over a 190-nm span are demonstrated 相似文献
5.
Park G. Huffaker D.L. Zou Z. Shchekin O.B. Deppe D.G. 《Photonics Technology Letters, IEEE》1999,11(3):301-303
Data are presented on the temperature dependence of 1.3-μm wavelength quantum-dot (QD) lasers. A low-threshold current density of 90 A/cm2 is achieved at room temperature using high reflectivity coatings. Despite the low-threshold current density, lasing at the higher temperatures is limited by nonradiative recombination with a rapid increase in threshold current occurring above ~225 K. Our results suggest that very low threshold current density (⩽20 A/cm 2) can be achieved at room temperature from 1.3-μm QD lasers, once nonradiative recombination is eliminated 相似文献
6.
1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well laserswith a p-AlInAs electron stopper layer
Takemasa K. Munakata T. Kobayashi M. Wada H. Kamijoh T. 《Photonics Technology Letters, IEEE》1998,10(4):495-497
1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well (MQW) lasers with a p-AlInAs electron stopper layer have been fabricated. The electron stopper layer was inserted between the MQW and p-side separate confinement heterostructure (SCH) layers to suppress the electron overflow from the MQW to p-SCH. The characteristic temperatures of the threshold currents and slope efficiencies were improved in the lasers with the stopper layers, especially at higher temperatures. As a result, a maximum operating temperature of 155°C was achieved, which was 20°C higher than that without the stopper layer 相似文献
7.
Yamamoto T. Watanabe T. Ide S. Tanaka I. Nobuhara H. Wakao K. 《Photonics Technology Letters, IEEE》1994,6(10):1165-1166
We have developed 1.3 μm n-type modulation-doped strained-layer quantum-well lasers. Modulation-doped lasers with long cavities (low threshold gain) exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 250 A/cm2 for 1500 μm long lasers with five quantum wells. The estimated threshold current density for an infinite cavity length was 38 A/m2/well. This is the lowest value for InGaAsP-InGaAsP and InGaAs-InGaAsP quantum well lasers to our knowledge 相似文献
8.
1.3-μm InGaAsN:Sb-GaAs single-quantum-well laser diodes have been grown by a solid source molecular beam epitaxy (MBE) using Sb as a surfactant. A record low threshold of 1.02 kA/cm2 and a slope efficiency of 0.12 W/A are obtained for broad-area laser diodes under pulsed operation at room temperature. A characteristic temperature of 64 K and a lasing wavelength temperature dependence of 0.38 nm/°C are reported 相似文献
9.
Chao C.-P. Garbuzov D.Z. Shiau G.-J. Forrest S.R. DiMarco L.A. Harvey M.G. 《Photonics Technology Letters, IEEE》1995,7(8):836-838
A 1.3-μm wavelength, InGaAsP-InP folded-cavity, surface-emitting laser with CH4-H2 reactive ion-etched vertical and 45° angled facets was demonstrated for the first time. Continuous-wave threshold currents of 32 mA have been achieved, with >15 mW CW power for the surface-emitted light. These surface-emitting lasers with two dry-etched facets are suitable for wafer-level testing and for monolithic integration with other InP-based photonic devices 相似文献
10.
Yamada M. Anan T. Tokutome K. Kamei A. Nishi K. Sugou S. 《Photonics Technology Letters, IEEE》2000,12(7):774-776
GaAsSb quantum-well (QW) edge-emitting lasers grown on GaAs substrates were demonstrated. The optical quality of the QW was improved by optimizing the growth conditions and introducing a multi-QW to increase the gain. As a result, 1.27-μm lasing of a GaAs0.66 Sb0.34-GaAs double-QW laser was obtained with a low-threshold current density of 440 A/cm2, which is comparable to that in conventional InP-based long-wavelength lasers. 1.30 μm lasing with a threshold current density of 770 A/cm2 was also obtained by increasing the antimony content to 0.36. GaAsSb QW was found to be a suitable material for use in the active layer of a 1.3-μm vertical-cavity surface-emitting lasers 相似文献
11.
Sellers I.R. Liu H.Y. Groom K.M. Childs D.T. Robbins D. Badcock T.J. Hopkinson M. Mowbray D.J. Skolnick M.S. 《Electronics letters》2004,40(22):1412-1413
A high growth temperature step used for the GaAs spacer layer is shown to significantly improve the performance of 1.3 /spl mu/m multilayer InAs/GaAs quantum-dot lasers. Extremely low room-temperature continuous-wave threshold current densities of 32.5 and 17 A/cm/sup 2/ are achieved for a three-layer device with as-cleaved facets and high-reflectivity coated facets, respectively. 相似文献
12.
Bjorlin E.S. Riou B. Keating A. Abraham P. Chiu Y.-J. Piprek J. Bowers J.E. 《Photonics Technology Letters, IEEE》2000,12(8):951-953
We demonstrate the first 1.3-μm vertical-cavity optical amplifier. The amplifier was optically pumped and operated in reflection mode. Optimization of the top mirror reflectivity resulted in a 9.4-dB continuous wave fiber-to-fiber gain, a gain-bandwidth product of 220 GHz, and a saturation output power of -6.1 dBm, all at room temperature. By modulating the pump source, an extinction ratio of 27 dB in the output signal power was obtained 相似文献
13.
T. Amano T. Sugaya K. Komori 《Photonics Technology Letters, IEEE》2006,18(4):619-621
We realized a triple-stacked 1.3-/spl mu/m InAs quantum dot (QD) with a high density of 2.4/spl times/10/sup 11/ cm/sup -2/ and a high uniformity of below 24 meV that employs an As/sub 2/ source and a gradient composition (GC) strain-reducing layer (SRL) grown on a GaAs substrate. We demonstrated the 1.3-/spl mu/m wavelength emission of this triple-stacked QD laser with a 0.92-mm cavity length and a cleaved facet at room temperature. In addition, we realized the highest maximum modal gain yet reported of 8.1 cm/sup -1/ per QD layer at beyond 1.28 /spl mu/m by using our high-density and high-uniformity QD. 相似文献
14.
15.
1.3-μm AlGaInAs-InP strained multiple-quantumwell (MQW) buried-heterostructure (BH) lasers have been successfully fabricated. InP current blocking layers could be smoothly regrown using the simple HF pretreatment, although the etched active region includes Al-containing layers. The threshold current Ith was typically 11 mA for as-cleaved 350-μm-long devices, which is about 30% lower than that of the ridge laser counterparts. A maximum continuous-wave operating temperature as high as 155°C was achieved. For the 200-μm-long device with the high-reflective-coated rear-facet, Ith was as low as 7.5 mA and characteristic temperature T0 was 80 K. The BH lasers also provided more circular far-field patterns and lower thermal resistances than for ridge lasers 相似文献
16.
A high characteristic temperature with T0 of 126 K under continuous-wave operation is obtained for an InAs/GaAs quantum dot laser. A triple-stacked active region with an energy separation of 95 meV between the ground and first excited radiative transitions is used to achieve a ground state saturation gain at 300 K of 13 cm-1, and high internal quantum efficiency of 74% 相似文献
17.
I.C. Sandall P.M. Smowton C.L. Walker H.Y. Liu M. Hopkinson D.J. Mowbray 《Photonics Technology Letters, IEEE》2006,18(8):965-967
We measure, in real units, the radiative and total current density in high performance 1.3-/spl mu/m InAs quantum-dot-laser structures. Despite very low threshold current densities, significant nonradiative recombination (/spl sim/80% of the total recombination) occurs at 300 K with an increasing fraction at higher current density and higher temperature. Two nonradiative processes are identified; the first increases approximately linearly with the radiative recombination while the second increases at a faster rate and is associated with the loss of carriers to either excited dot states or the wetting layer. 相似文献
18.
Low-threshold lasing is achieved at 1.154 μm for an oxide-confined quantum-dot (QD) vertical-cavity surface-emitting laser (VCSEL) grown on a GaAs substrate. The long wavelength emission is obtained through use of an InAs-GaAs QD active region. A continuous-wave (CW) threshold of 502 μA is obtained for a device size of 10-μm diameter, corresponding to a threshold current density of 640 A/cm2 相似文献
19.
Shimizu H. Kumada K. Yamanaka N. Iwai N. Mukaihara T. Kasukawa A. 《Quantum Electronics, IEEE Journal of》2000,36(6):728-735
The effect of both n-type and p-type modulation doping on multiple-quantum-well (MQW) laser performances was studied using gas-source molecular beam epitaxy (MBE) with the object of the further improvement of long-wavelength strained MQW lasers. The obtained threshold current density was as low as 250 A/cm2 for 1200-μm-long devices in n-type modulation-doped MQW (MD-MQW) lasers. A very low CW threshold current of 0.9 mA was obtained in 1.3-μm InAsP n-type MD-MQW lasers at room temperature, which is the lowest ever reported for long-wavelength lasers using n-type modulation doping, and the lowest value for lasers grown by all kinds of MBE in the long-wavelength region. Both a reduction of the threshold current and the carrier lifetime in n-type MD MQW lasers caused the reduction of the turn-on delay time by about 30%. The 1.3-μm InAsP strained MQW lasers using n-type modulation doping with very low power consumption and small turn-on delay time are very attractive for laser array applications in high-density parallel optical interconnection systems. On the other hand, the differential gain was confirmed to increase by a factor of 1.34 for p-type MD MQW lasers (NA=5×1018 cm -3) as compared with undoped MQW lasers, and the turn-on delay time was reduced by about 20% as compared with undoped MQW lasers. These results indicate that p-type modulation doping is suitable for high-speed lasers 相似文献
20.
Reinhardt M. Fischer M. Kamp M. Hofmann J. Forchel A. 《Photonics Technology Letters, IEEE》2000,12(3):239-241
Room temperature continuous-wave operation of 1.3-μm single-mode GaInNAs-AlGaAs distributed feedback (DFB)-lasers has been realized. The laser structure has been grown by solid source molecular beam epitaxy (MBE) using an electron cyclotron resonance plasma source for nitrogen activation (ECR-MBE). Laterally to the laser ridge a metal grating is patterned in order to obtain DFB. The evanescent field of the laser mode couples to the grating resulting in single-mode DFB emission. The continuous wave threshold currents are around 120 mA for a cavity with 800-μm length and 2 μm width. Monomode emission with side-mode suppression ratios of nearly 40 dB have been obtained 相似文献