首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autonomous distributed control (ADC) is one of the most attractive approaches for more versatile and autonomous robot systems. The paper proposes a parallel and distributed trajectory generation method for redundant manipulators through cooperative and competitive interactions among subsystems composing the ADC that is based on a concept of virtual arms. The virtual arm has the same kinematic structure as the manipulator except that its end point is located on a joint or link of the manipulator. Then the redundant manipulator can be represented by a set of the virtual arms. Trajectory generation and point to point control of the redundant manipulator are discussed, and it is shown that the kinematic redundancy of the manipulator can be utilized positively in the generated trajectories by using the virtual arms.  相似文献   

2.
A recurrent neural network, called the Lagrangian network, is presented for the kinematic control of redundant robot manipulators. The optimal redundancy resolution is determined by the Lagrangian network through real-time solution to the inverse kinematics problem formulated as a quadratic optimization problem. While the signal for a desired velocity of the end-effector is fed into the inputs of the Lagrangian network, it generates the joint velocity vector of the manipulator in its outputs along with the associated Lagrange multipliers. The proposed Lagrangian network is shown to be capable of asymptotic tracking for the motion control of kinematically redundant manipulators.  相似文献   

3.
This article addresses the association between the unstiffening phenomena in structural mechanics and the algorithmic singularities encountered in the impedance‐based repeatable control algorithms used to command redundant manipulators. It is well known that velocity control schemes such as the pseudoinverse control schemes do not guarantee repeatability for redundant manipulators. In other words, for a closed end‐effector trajectory, the joints do not, in general, exhibit a closed trajectory. One way to overcome this problem is to model each joint with compliance and incorporate a second‐order correction term for the pseudoinverse. With this model, the joint configuration adopted by the manipulator at a given point in task space is one which minimizes the artificial potential energy of the system and is locally unique. In terms of statics, this is equivalent to saying that the elastic structure reaches its static equilibrium under external load. Keep this analogy in mind. We know that the impedance control commands the manipulator to mimic the behavior of an elastic articulated chain. For any phenomena observable on a real elastic structure, we should be able to find its counterpart embedded in the impedance control. In this article, we analyze the performance of such repeatable control algorithms from the point of view of structure mechanics. Singularities in the algorithm are examined and their significance in mechanics are also discussed. © 2001 John Wiley & Sons, Inc.  相似文献   

4.
In this work, impedance control approach based on an extended task space formulation is addressed to control the kinematically redundant manipulators. By defining a weighted inner product in joint space, a minimal parameterization of the null space is achieved, and we can visualize the null space motion explicitly. Moreover, it is shown that careful choice of the weighting matrix gives physically consistent and inertially decoupled dynamics. By augmenting this minimal null motion parameter with a forward kinematic relation, a new extended task space formulation can be obtained. Based on this formulation, we propose two control methods, a kinematically decomposed impedance controller and an inertially decoupled impedance controller, to control the motion of the end-effector as well as the internal motion expanding the conventional impedance control. We also show the relationship with the previous dynamic controllers of a redundant manipulator. Some numerical simulations are given to demonstrate the performance of the proposed control methods. © 1998 John Wiley & Sons, Inc.  相似文献   

5.
In this paper, a recurrent neural network called the dual neural network is proposed for online redundancy resolution of kinematically redundant manipulators. Physical constraints such as joint limits and joint velocity limits, together with the drift-free criterion as a secondary task, are incorporated into the problem formulation of redundancy resolution. Compared to other recurrent neural networks, the dual neural network is piecewise linear and has much simpler architecture with only one layer of neurons. The dual neural network is shown to be globally (exponentially) convergent to optimal solutions. The dual neural network is simulated to control the PA10 robot manipulator with effectiveness demonstrated.  相似文献   

6.
A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry truss manipulators (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. This paper presents a solution to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm has been developed primarily for variable-geometry-truss manipulators, it is general enough for application to other manipulator designs.  相似文献   

7.
Redundancy can, in general, improve the ability and performance of parallel manipulators by implementing the redundant degrees of freedom to optimize a secondary objective function. Almost all published researches in the area of parallel manipulators redundancy were focused on the design and analysis of redundant parallel manipulators with rigid (nonconfigurable) platforms and on grasping hands to be attached to the platforms. Conventional grippers usually are not appropriate to grasp irregular or large objects. Very few studies focused on the idea of using a configurable platform as a grasping device. This paper highlights the idea of using configurable platforms in both planar and spatial redundant parallel manipulators, and generalizes their analysis. The configurable platform is actually a closed kinematic chain of mobility equal to the degree of redundancy of the manipulator. The additional redundant degrees of freedom are used in reconfiguring the shape of the platform itself. Several designs of kinematically redundant planar and spatial parallel manipulators with configurable platform are presented. Such designs can be used as a grasping device especially for irregular or large objects or even as a micro-positioning device after grasping the object. Screw algebra is used to develop a general framework that can be adapted to analyze the kinematics of any general-geometry planar or spatial kinematically redundant parallel manipulator with configurable platform.  相似文献   

8.
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.  相似文献   

9.
Kinematic control of redundant robots and the motion optimizabilitymeasure   总被引:1,自引:0,他引:1  
This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.  相似文献   

10.
The efficient utilization of the motion capabilities of mobile manipulators, i.e., manipulators mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by the addition of the degrees of freedom (DOF) of the platform to those of the manipulator. At the velocity level, the linearized Jacobian equation for such a redundant system represents an underspecified system of algebraic equations, which can be subject to a varying set of contraints such as a non-holonomic constraint on the platform motion, obstacles in the workspace, and various limits on the joint motions. A method, which we named the Full Space Parameterization (FSP), has recently been developed to resolve such underspecified systems with constraints that may vary in time and in number during a single trajectory. In this article, we first review the principles of the FSP and give analytical solutions for constrained motion cases with a general optimization criterion for resolving the redundancy. We then focus on the solutions to (1) the problem introduced by the combined use of prismatic and revolute joints (a common occurrence in practical mobile manipulators), which makes the dimensions of the joint displacement vector components non-homogeneous, and (2) the treatment of a non-holonomic constraint on the platform motion. Sample implementations on several large-payload mobile manipulators with up to 11 DOF are discussed. Comparative trajectories involving combined motions of the platform and manipulator for problems with obstacle and joint limit constraints, and with non-holonomic contraints on the platform motions, are presented to illustrate the use and efficiency of the FSP approach in complex motion planning problems. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
For the dynamic control of kinematically redundant manipulators, conventional approaches to local torque minimization have induced physically unachievable joint torques that may exceed the torque limits in the tracing motion of a long end-effector trajectory. This article presents a new control method for redundant manipulators, named the “Null Torque-Based Dynamic Control” (NTDC), which can guarantee stability for joint torques. The proposed method resolves the redundancy at the torque level. The command torque induced by the proposed method is composed of two terms: (1) the minimum-norm torque, which locally minimizes torque loadings at the joints; and (2) the null torque, which is intermittently added to the minimum-norm torque according to a kinematic criterion to globally reduce excessively large torque requirements. In particular, the concept of null torque is based on the property of full row-rank minors for a Jacobian matrix—the aspect that is a function of a manipulator's configuration. The simulation results illustrate that the proposed method is effective for torque optimization when compared with conventional methods.  相似文献   

12.
本文提出基于误差预测的机器人鲁棒控制器。考虑到机器人的动力学建模误差影响其控制性能,本文建立机器人的误差模型,给出预测建模误差对运动轨迹偏差的作用的有效方法,并提出建模误差的鲁棒性补偿。本文分别在关节空间和直角空间针对冗余机器人和非冗余机器人提出鲁棒预测控制器设计,其有效性由仿真例子检验。  相似文献   

13.
This article presents a new method for generating inverse kinematic solutions for planar manipulators with large redundancy (hyper-redundant manipulators). The proposed method starts by decomposing a planar redundant manipulator into a series of local planar arms that are either 2-link or 3-link manipulator modules, and connecting the conjunction points between them with virtual links. The manipulator then can be handled by a simple virtual link system, which may be conveniently divided into non-singular and singular cases depending on its configuration. When the virtual link system is no longer effective due to a singular configuration, the displacement of the end-effector is then allocated to virtual links according to a displacement distribution criterion. A dexterity index called the “configuration index” distinguishes the non-singular and singular cases. The concept of virtual link is shown by computer simulations to be simple and effective for the inverse kinematics of a planar hyper-redundant manipulator with a discrete model. In particular, it can be applied to solving the inverse kinematics of a SCARA-type spatial redundant manipulator whose redundancy is included in its planar mechanism. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
This article presents a meaningful, practical, and theoretically sound solution that solves the problem of grasping a rigid object with a hand that has redundant (>6) grasping contacts. This is accomplished by introducing compliance at each contact point in such a way as to provide the engineer with the capabilities of object manipulation via controlled forces at the contact points. This method of solution is adapted straight-away to compute the static forces generated in the legs of a redundant in-parallel manipulator that equilibrates a wrench applied to the moving/platform or end-effector. In a way similar to the redundant grasping problem, this is accomplished by introducing the knowledge of the compliances that exist in the legs. The solution thus obtained stems from physical parameters that model the in-parallel manipulator. The in-depth study of the duality between the statics of in-parallel manipulators and the kinematics of serial manipulators reveals a meaningful, practical, and theoretically sound solution for the inverse kinematics of a redundant serial manipulator. This is accomplished by incorporating the knowledge of the compliances that exist or are desired to exist in the joints of the manipulator. (For instance, the torsional compliance in revolute joints or the linear compliance in prismatic joints.) Such information provides a physically meaningful model of the serial manipulator that in turn yields a physically meaningful set of joint increments for a given end-effector twist. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
董云  杨涛  李文 《计算机仿真》2012,29(3):239-243
研究优化机械手轨迹规划问题,机械手运动时要具有稳定性避障性能。针对平面3自由度冗余机械手优化控制问题,建立机械手的结构模型。提出用解析法和遗传算法相结合满足具有计算量小和适应性强的特点。在给定机械手末端执行器的运动轨迹,按着机械手冗余自由度,运动轨迹上每个点对应的关节角有无穷多个解。而通过算法可以找到一组最优的关节角,可得到优化机械手运动过程中柔顺性和避障点。仿真结果表明,该算法可以快速收敛到全局最优解,可用于计算冗余机械手运动学逆解,并可实现机器人的轨迹规划和避障优化控制。  相似文献   

16.
A new control method for kinematically redundant manipulators having the properties of torque-optimality and singularity-robustness is developed. A dynamic control equation, an equation of joint torques that should be satisfied to get the desired dynamic behavior of the end-effector, is formulated using the feedback linearization theory. The optimal control law is determined by locally optimizing an appropriate norm of joint torques using the weighted generalized inverses of the manipulator Jacobian-inertia product. In addition, the optimal control law is augmented with fictitious joint damping forces to stabilize the uncontrolled dynamics acting in the null-space of the Jacobian-inertia product. This paper also presents a new method for the robust handling of robot kinematic singularities in the context of joint torque optimization. Control of the end-effector motions in the neighborhood of a singular configuration is based on the use of the damped least-squares inverse of the Jacobian-inertia product. A damping factor as a function of the generalized dynamic manipulability measure is introduced to reduce the end-effector acceleration error caused by the damping. The proposed control method is applied to the numerical model of SNU-ERC 3-DOF planar direct-drive manipulator.  相似文献   

17.
The purpose of this study is to control the position of an underactuated underwater vehicle manipulator system (U‐UVMS). It is possible to control the end‐effector using a regular 6‐DOF manipulator despite the undesired displacements of the underactuated vehicle within a certain range. However, in this study an 8‐DOF redundant manipulator is used in order to increase the positioning accuracy of the end‐effector. The redundancy is resolved according to the criterion of minimal vehicle and joint motions. The underactuated underwater vehicle redundant manipulator system is modeled including the hydrodynamic forces for the manipulator in addition to those for the autonomous underwater vehicle (AUV). The shadowing effects of the bodies on each other are also taken into account when computing the hydrodynamic forces. The Newton‐Euler formulation is used to derive the system equations of motion including the thruster dynamics. In order to establish the end‐effector trajectory tracking control of the system, an inverse dynamics control law is formulated. The effectiveness of the control law even in the presence of parameter uncertainties and disturbing ocean currents is illustrated by simulations.  相似文献   

18.
冗余机器人的双向自运动路径规划   总被引:2,自引:0,他引:2  
冗余机器人的自运动路径规划是在保持手端任务向量不变的情况下,在关节空间内寻找一条连接机器人初始关节构形和期望关节构型的几何路径.本文给出一种双向自运动路径规划算法,其基本思想是使位于初始关节构形的真实机器人和位于期望关节构形的虚拟机器人在自运动流形上运动并收敛到同一关节构形,从而得到一条连接初始和期望关节构形的自运动几何路径.该算法克服了以往算法容易陷入局部极小构形的缺陷.仿真结果证实了算法的有效性.  相似文献   

19.
An inverse kinematic analysis addresses the problem of computing the sequence of joint motion from the Cartesian motion of an interested member, most often the end effector. Although the rates and accelerations are related linearly through the Jacobian, the positions go through a highly nonlinear transformation from one space to another. Hence, the closed-form solution has been obtained only for rather simple manipulator configurations where joints intersect or where consecutive axes are parallel or perpendicular. For the case of redundant manipulators, the number of joint variables generally exceeds that of the constraints, so that in this case the problem is further complicated due to an infinite number of solutions. Previous approaches have been directed to minimize a criterion function, taking into account additional constraints, which often implies a time-consuming optimization process. In this article, a different approach is taken to these problems. A Newton-Raphson numerical procedure has been developed based on a composite Jacobian which now includes rows for all members under constraint. This procedure may be applied to solve the inverse kinematic problem for a manipulator of any mechanical configuration without having to derive beforehand a closed-form solution. The technique is applicable to redundant manipulators since additional constraints on other members as well as on the end effector may be imposed. Finally, this approach has been applied to a seven degree-of-freedom manipulator, and its ability to avoid obstacles is demonstrated.  相似文献   

20.
This paper proposes an impedance control method called the multi-point impedance control (MPIC) for redundant manipulators. The method can not only control end-effector impedance, but also regulate impedances of several points on the links of the manipulator, which are called virtual end-point impedances, utilizing arm redundancy. Two approaches for realizing the MPIC are presented. In the first approach, controlling the end-effector impedance and the virtual end-point impedances are considered as the tasks with the same level, and the joint control law developed in this approach can realize the closest impedances of the multiple points, including the end-effector and the virtual end-points to the desired ones in the least squared sense. On the other hand, in the second approach, controlling the end-effector impedance is considered the most important task, and regulating the impedances of the virtual end-points is considered as a sub-task. Under the second approach, the desired end-effector impedance can be always realized since the joint control torque for the regulation of the virtual end-point impedances is designed in such a way that it has no effect on the end-effector motion of the manipulator. Simulation experiments are performed to confirm the validity and to show the advantages of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号