首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
米欣  鲁中华  张杰  王晓文  方科 《电源技术》2016,(12):2483-2485
介绍了美国3M公司发明与生产的新型灭火剂Novec1230的基本物理化学性能,灭火机理等内容,并论证了Novec1230提升电池组安全性的实验方案。Novec1230液体能够有效地控制电池组的工作温度,更重要的是,它本身就是一种性能良好的灭火剂,一旦由于外部撞击或内部不良使得电池产生火灾,Novec1230液体也能够有效地起到抑制燃烧的作用。因此将整个锂离子电池组浸没在Novec1230的液体中则很有可能显著提高锂离子电池组的安全性,不失为一种很有潜力的安全性解决方案。  相似文献   

2.
动力锂离子电池管理系统的研究进展   总被引:1,自引:0,他引:1  
锂离子电池是发展电动汽车的最具潜力的能源载体之一,从锂离子电池应用于电动汽车的研究现状出发,阐述了锂离子电池管理系统对于锂离子电池组的重要性以及研究的必要性。介绍了动力锂离子电池管理系统的发展现状,包括电池组外部参数的在线检测、SOC估计以及电池组的均衡,并对动力锂离子电池管理系统未来的发展方向做出了展望。  相似文献   

3.
电子香烟内部的锂离子电池是决定其安全性能的一个重要的影响因素。本次实验,依据国家强制性标准GB31241-2014《便携式电子产品用锂离子电池和电池组安全要求》和GB 4943.1-2011《信息技术设备安全第1部分:通用要求》从常温外部短路、过充电、燃烧喷射和外壳可燃性等系列实验,来考核电池产品的安全性能。实验结果表明,锂离子电池和适配器产品中,有4个批次不能够通过标准测试,有2个批次发生起火、爆炸,存在着严重的安全隐患。  相似文献   

4.
针对目前电池组检测设备存在着精度低、能耗高和电池组内电池不能单独检测等问题,基于单片机技术开发出一套具有三级分布式结构的电池组智能检测系统.该系统可对锂离子动力电池组内单体电池的充放电性能进行检测,具有能耗低、精度高和操作简单等特点.经验证,该系统能够显著提高电池组检验生产的效率.  相似文献   

5.
李胜辉  孙峰  冷雪  刘莉  沈丽 《电源技术》2017,(11):1547-1549,1580
锂离子电池组是电动汽车主要的动力来源,电池组的性能决定了整车性能。锂离子电池在使用时会有严重的发热情况,造成了电池组温度升高,并且各电池之间温度具有非均匀性,严重时会影响电池的使用寿命,产生故障甚至引发行车中的安全问题。以某电动车用锂离子动力电池为研究对象,对电池单体及电池组模块进行温度场分析,研究其动态变化规律,以得到其运行时的温度特性,为实际工程中电池组的设计及优化提供了理论依据。  相似文献   

6.
锂离子电池热模型对于电池单体和热管理系统的设计有着重要的意义,研究串并联组合的锂离子电池组在混合动力汽车系统中的性能和寿命,提出面向控制的电池组动态热模型,该模型能根据电池组当前的环境温度、运行负荷、冷却强度和初始荷电状态实时估计电池组中各单体电池的运行温度。实验利用18650型锂离子电池单体,实现3并3串和3串3并形式的电池组循环充放电,得到单体电池温度分布曲线。仿真比较结果表明,提出的电池组热模型具有较高的估计精度,满足混合动力汽车的热管理系统的设计要求。  相似文献   

7.
桂长清 《电池》2011,41(2):88-91
磷酸铁锂(LiFePO4)锂离子电池的性能受环境温度的影响较大,在环境温度低于0℃时,电池的内阻迅速增加,比能量和比功率迅速下降,电动汽车的起动性能受到影响.为了使电池组能正常运行,需要采取保温措施.由于LiFePO4锂离子电池的内阻较高,电池组运行时温度升高,为保证安全运行,要提供冷却系统.  相似文献   

8.
王晋鹏  李阳艳 《电源技术》2013,37(1):39-40,133
锂离子电池凭借其性能优点在各方面都得到了大量应用,但其在应用过程中热量的产生是一个必须注意的问题,它不仅影响锂离子电池的性能,也产生安全问题。基于此,用有限元分析软件ANSYS对锂离子电池组进行了温度场分析,研究了不同堆积方式对电池组温度场的影响。结果表明堆积方式对锂离子电池组的温度场有着明显的影响,方形电池组在堆放时应尽量避免堆积成正方体。  相似文献   

9.
锂离子电池的不一致性会影响电池组的使用寿命,降低了电池成组后的性能。锂电池成组不一致性是指单体电池的容量、电压、内阻、自放电速率等参数存在差异,是由电池组的组合结构、使用工况、使用环境、电池管理不同所致。对单体电池分选制度、电池组连接方式、BMS均衡控制、充放电策略和热管理提出了改进方法。  相似文献   

10.
锂离子电池组合前后的特性研究   总被引:1,自引:0,他引:1  
张华辉  齐铂金  袁学庆  郑敏信 《电池》2007,37(4):294-296
为更好地使用锂离子电池组,更精确地估算电池的荷电状态(SOC),对锂离子电池组合前后进行了常温4.0 A充放电、常温7.5 A放电、-20℃下4.0A放电以及55℃下4.0A放电等实验测试.实验结果显示:锂离子电池成组后的充放电特性有所下降,电池组总容量下降为单体电池的90%左右,SOC偏低,工作电压的下降速率在放电末期急剧上升,可达平台区的50倍.对电池组的一致性进行了分析,得出锂离子电池成组时应充分考虑单体电池的一致性;在估算SOC时,采用电池组参数和单体电池参数相结合的方式.  相似文献   

11.
锂离子电池正极材料的性能研究   总被引:2,自引:1,他引:1  
对电动自行车用锂离子电池正极材料的电性能和交流阻抗特性进行了分析研究。结果表明,LiFePO4和LiMn2O4两种材料各有优点和不足之处,LiFePO4电池的高温性能和荷电保持能力较好,而大电流放电能力和低温性能较差。LiMn2O4电池的大电流放电能力较好,高温荷电保持能力较差。  相似文献   

12.
随着对锂离子动力电池的研究深入,LiFePO4正极材料以其诸多优势有希望得到广泛应用,但是其差强人意的低温性能一直备受关注。介绍了以LiFePO4为正极材料的锂离子电池低温性能难以提高的原因,分析了锂离子电池的正、负极材料和电解液对电池低温性能的影响。最后简要提出了提高低温性能的方法。  相似文献   

13.
王金良 《电池工业》2010,15(4):234-238
分析了锂离子电池的产业现状和影响动力锂离子电池推广应用的主要因素;展望了动力锂离子电池的发展趋势,认为性能比较因素、低碳经济、环境保护的社会需要以及强劲的市场需求将推动动力锂离子电池高速发展;探讨了动力锂离子电池发展的技术路线。  相似文献   

14.
电压检测电路对锂离子电池组的影响   总被引:4,自引:2,他引:2  
蒋新华  冯毅  解晶莹 《电池》2005,35(2):135-136
对锂离子电池组中的电压检测电路进行了分析,设计了一种实用的电压检测电路.通过10只锂离子电池组的循环寿命实验,验证了电池组中单体电池随着循环的进行,差异变大;通过提高输入阻抗的方法,研究电池组循环寿命,结果表明:检测电路的设计应该考虑对电池组一致性的影响;提出了在实际应用中,减小电压检测电路对电池组的影响的方法.  相似文献   

15.
对部分锂离子电池产品进行了航空运输条件检测,其中有两批电池在温度循环试验中发生漏液.研究这两批锂离子电池的结构,发现电池在试验中发生漏液的原因主要是制造工艺存在问题.实验结果表明,部分锂离子电池在安全性能方面存在问题.  相似文献   

16.
锂离子电池用黏结剂的研究进展   总被引:1,自引:0,他引:1  
黏结剂是锂离子电池的重要组成部分,其性能的优劣直接影响电池的性能。介绍了黏结剂在锂离子电池中的作用及对其要求。重点综述了最新专利中聚偏氟乙烯(PVDF)粘结剂、水溶性粘结剂及其它黏结剂在锂离子电池中的应用。指出从黏结剂分子结构出发,探讨结构与性能的关系,对于选择和改善黏结剂,提高电池的综合性能,具有现实的意义。  相似文献   

17.
锂离子电池隔膜的研究和发展现状   总被引:7,自引:1,他引:7  
伊廷锋  胡信国  高昆 《电池》2005,35(6):468-470
综述了锂离子电池隔膜制备方法的研究进展.重点介绍了锂离子电池隔膜的结构、性能及其对电池性能的影响,展望了锂离子电池隔膜的改进方向及其发展前景.隔膜的发展趋势是较高的孔隙率和抗撕裂强度、较低的内阻和良好的弹性.  相似文献   

18.
锂离子电池贮存性能近来越来越得到重视。考察了不同充电状态、不同贮存温度的LiFePO4锂离子电池的剩余容量、恢复容量、内阻、充放电平台以及充放电循环寿命。结果表明:在磷酸亚铁锂电池使用时,80%荷电状态的电池贮存性能好于100%荷电状态的电池,而且从安全性考虑,满电态贮存的电池危险性也很大。  相似文献   

19.
史瑞祥 《电池工业》2014,(3):145-147
锂离子动力电池由于安全性问题,应用于电动汽车和混合动力汽车受到限制。本文从电池材料的选择、动力电池的设计等方面分析影响锂离子动力电池的因素,总结改善锂离子动力电池安全性能的方法。  相似文献   

20.
胡杨  李艳  连芳  钟盛文  刘庆国 《电池》2005,35(6):462-464
在电池串、并联使用过程中,锂离子电池的耐过充性在其正常运行时,发挥着重要作用.概述了过充电时电池内部的反应机理和提高电池耐过充性的措施.研究表明:建立内在的过充保护机制,选择具有良好热稳定性的正极材料,可以提高电池的耐过充性.采用适当的充电模式,避免高倍率充电,可以防止电池爆炸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号