首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the routing and wavelength assignment (RWA) problem of scheduled lightpath demands (SLDs) in all-optical wavelength division multiplexing networks with no wavelength conversion capability. We consider the deterministic lightpath scheduling problem in which the whole set of lightpath demands is completely known in advance. The objective is to maximize the number of established lightpaths for a given number of wavelengths. Since this problem has been shown to be NP complete, various heuristic algorithms have been developed to solve it suboptimally. In this paper, we propose a novel heuristic RWA algorithm for SLDs based on the bee colony optimization (BCO) metaheuristic. BCO is a newborn swarm intelligence metaheuristic approach recently proposed to solve complex combinatorial optimization problems. We compare the efficiency of the proposed algorithm with three simple greedy algorithms for the same problem. Numerical results obtained by numerous simulations performed on the widely used realistic European Optical Network topology indicate that the proposed algorithm produces better-quality solutions compared to those obtained by greedy algorithms. In addition, we compare the results of the BCO–RWA–SLD algorithm with four other heuristic/metaheuristic algorithms proposed in literature to solve the RWA problem in the case of permanent (static) traffic demands.  相似文献   

2.
Routing and wavelength assignment of scheduled lightpath demands   总被引:4,自引:0,他引:4  
We present algorithms that compute the routing and wavelength assignment (RWA) for scheduled lightpath demands in a wavelength-switching mesh network without wavelength conversion functionality. Scheduled lightpath demands are connection demands for which the setup and teardown times are known in advance. We formulate separately the routing problem and the wavelength assignment problem as spatio-temporal combinatorial optimization problems. For the former, we propose a branch and bound algorithm for exact resolution and an alternative tabu search algorithm for approximate resolution. A generalized graph coloring approach is used to solve the wavelength assignment problem. We compared the proposed algorithms to an RWA algorithm that sequentially computes the route and wavelength assignment for the scheduled lightpath demands.  相似文献   

3.
In a wavelength-routed optical network, a transmitted signal remains in the optical domain over the entire route (lightpath) assigned to it between its source and destination nodes. The optical signal may have to traverse a number of crossconnect switches (XCSs), fiber segments, and optical amplifiers, e.g., erbium-doped fiber amplifiers (EDFAs). Thus, while propagating through the network, the signal may degrade in quality as it encounters crosstalk at the XCSs and also picks up amplified spontaneous emission (ASE) noise at the EDFAs. Since these impairments continue to degrade the signal quality as it progresses toward its destination, the received bit error rate (BER) at the destination node might become unacceptably high. Previous work on the lightpath routing and wavelength assignment (RWA) problem assumed an ideal physical layer and ignored these transmission impairments. The main contribution of our work is to incorporate the role of the physical layer in setting up lightpaths by employing appropriate models of multiwavelength optical devices (XCSs and EDFAs) such that the BER of a candidate lightpath can be computed, in advance, to determine if this lightpath should be used for the call. Features from existing RWA algorithms are integrated with our on-line BER calculation mechanism. Our simulation studies indicate that employing BER-based call-admission algorithms has a significant impact on the performance of realistic networks  相似文献   

4.
In general, multicast routing and wavelength assignment (MC-RWA) can be subdivided in routing and wavelength assignment issues in wavelength-division multiplexing (WDM) mesh networks. Previous studies on WDM multicast have mainly focused on WDM multicast routing. The multicast wavelength assignment problem is studied in this paper. A unicast routing path can be established by a lightpath in an all-optical network. However, in the multicasting case, a multicast routing tree can be established by a single light-tree or several lightpaths, or a combination of several light-trees and lightpaths. We propose a wavelength assignment algorithm for finding an optimal combination of lightpaths and light-trees to construct a newly required multicast session. First of all, two cost functions are given to evaluate the establishing cost for each feasible wavelength, and then find a set of wavelengths that covers all destinations with the minimal cost using Integer Linear Programming (ILP) formulation. We focus on maximizing the total number of users served in a multicast session and the network capacity. The simulation results show that the proposed algorithm can improve system resource utilization and reduce the blocking probability compared with the First-Fit algorithm.This research was partially supported by the Grant of National Science Council, R.O.C. (NSC 94-2745-E-155-007-URD).  相似文献   

5.
Dynamic routing and wavelength assignment (RWA), which supports request arrivals and lightpath terminations at random times, is needed for rapidly changing traffic demands in wavelength division multiplexed, (WDM) networks. In this paper, a new distributed heuristic algorithm based on ant colony optimization for dynamic RWA is put forward. We consider the combination of route selection and wavelength assignment as a whole using a multilayer-graph model. Therefore, an extended multilayer-graph model for WDM networks with limited wavelength conversion is presented. Compared with other RWA methods, the Ant Colony heuristic algorithm can achieve better global network optimization and can reduce communication overhead cost of the networks. Simulation showed that a lower blocking probability and a more rational wavelength resource assignment can be achieved.  相似文献   

6.
We propose a novel genetic algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in wavelength-routed optical networks. The algorithm not only obtains low call blocking probability, but it also employs a very short computation time. Moreover, it is capable of providing fairness among connections, that is, to offer approximately the same quality of service (in terms of blocking probability) for all source-destination node pairs. Since requirements on optical network availability are highly severe, we also propose an extension of the algorithm to provide fault-tolerance capability at the optical layer. It is achieved by means of protection, where each optical connection request is provided with a pair of lightpaths (a primary and a backup lightpath). Again, the genetic algorithm proves to be highly efficient, in this case, at performing routing and wavelength assignment of pairs of lightpaths.  相似文献   

7.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Fiber optics have replaced copper as the primary transmission medium. Wavelength Division Multiplexing (WDM) networks effectively increase single-link bandwidth from 10 Mbps to over 160 Gbps, and have been considered as a promising candidate for the next-generation backbone network. All optical circuits each on a separate wavelength called lightpaths represent the first major method for optical communication. The granularity provided between a source and destination node is that of a complete wavelength. Once a lightpath is set up, the entire wavelength is used exclusively by the connection’s source and destination node-pair. No sub-wavelength sharing between nodes along the lightpath is allowed. However, it is often observed that the bandwidth requirement in today’s network is often dynamically varying and does not justify the need for allocating an entire wavelength. Therefore, the wavelength capacity may be underutilized. A new technology termed light trail was proposed to avoid the inability of intermediate nodes to use a connection wavelength, and the constant reconfiguration of switches. In this article, we study dynamic light trail routing in a WDM optical network. We present an efficient algorithm for establishing a light trail routing for a new connection request, while using minimum network resources. We also study survivable network routing using the proposed light trail technology. We present an efficient heuristic for computing a pair of working and protection light trails for a dynamic incoming connection request. Simulation results are presented which demonstrate the advantages of our routing schemes.  相似文献   

9.
We consider large optical networks in which nodes employ wavelength-routing switches which enable the establishment of wavelength-division-multiplexed (WDM) channels, called lightpaths, between node pairs. We propose a practical approach to solve routing and wavelength assignment (RWA) of lightpaths in such networks. A large RWA problem is partitioned into several smaller subproblems, each of which may be solved independently and efficiently using well-known approximation techniques. A multicommodity flow formulation combined with randomized rounding is employed to calculate the routes for lightpaths. Wavelength assignments for lightpaths are performed based on graph-coloring techniques. Representative numerical examples indicate the accuracy of our algorithms  相似文献   

10.
In this paper, we have studied a number of algorithms for routing in all-optical wavelength routed networks. We have considered situations where a lightpath is dynamically created in response to a request for communication and the WDM channels constituting the lightpath are reclaimed when the communication is over. We have looked at two schemes for dynamic wavelength allocation. In the first scheme we have assumed the existence of a central agent to maintain a database of existing lightpaths where the central agent attempts to generate a new lightpath in response to a request for communication. In the second scheme, we attempt to generate a new lightpath using a distributed algorithm. In the first scheme we have exploited the existence of multiple paths between any pair of nodes in a network in order to reduce the blocking probability. For the second scheme, we have proposed three distributed strategies to determine, if possible, a lightpath when there is a request for communication. Each of these strategies have their advantages and disadvantages in terms of the expected blocking probability and the set-up time. We have studied the performances of both the schemes using Monte Carlo simulation.  相似文献   

11.
Physical layer impairments in wavelength-routed networks limit the maximum distance, a signal can travel in the optical domain, without significant distortion. Therefore, signal regeneration is required at some intermediate nodes for long-haul lightpaths. In translucent WDM networks, sparsely located regenerators at certain nodes can be used to offset the impact of physical layer impairments. The routing and wavelength assignment (RWA) techniques in such translucent networks need to take into consideration the availability of regenerators and the maximum optical reach of the transparent lightpaths (without any regeneration). Although there has been significant research interest in RWA algorithms for translucent networks, much of the research has focused on dynamic RWA techniques. Only a handful of recent papers have considered the static (offline) case, and they typically propose heuristic algorithms to solve this complex design problem for practical networks. In this paper, we propose a generalized integer linear program (ILP) based formulation for static regenerator assignment and RWA in translucent WDM optical networks, with sparse regenerator placement. To the best of our knowledge, such a formulation that optimally allocates resources for a set of lightpaths for translucent networks, given the physical network, the locations of the regenerators, and the maximum optical reach has not been considered before. The proposed formulation is important for two reasons. First, it can serve as a benchmark for evaluating different heuristic approaches that may be developedin the future. Second, we show that using a novel node representation technique, it is possible to drastically reduce the number of integer variables. This means that unlike existing ILP formulations, our approach can actually be used to generate optimal solutions for practical networks, with hundreds of lightpath demands.  相似文献   

12.
Dynamic Routing and Wavelength Assignment in Survivable WDM Networks   总被引:1,自引:0,他引:1  
Dense wavelength division multiplexing (DWDM) networks are very attractive candidates for next generation optical Internet and intelligent long-haul core networks. In this paper we consider DWDM networks with wavelength routing switches enabling the dynamic establishment of lightpaths between each pair of nodes. The dynamic routing and wavelength assignment (RWA) problem is studied in multifiber networks, assuming both protection strategies: dedicated and shared. We solve the two subproblems of RWA simultaneously, in a combined way using joint methods for the wavelength selection (WS) and wavelength routing (WR) tasks. For the WS problem in contrast to existing strategies we propose a new, network state based selection method, which tries to route the demand on each wavelength, and selects the best one according to different network metrics (such as available channels, wavelengths per fiber and network load). For the WR problem we propose several weight functions for using in routing algorithms (Dijkstra or Suurballe), adapting dynamically to the load of the links and to the length of the path. The combination of different wavelength selection and routing (WS&WR) methods enables wide configuration opportunities of our proposed algorithm allowing good adaptation to any network state. We also propose the extension of the RWA algorithm for dedicated and shared protection and a new method for applying shared protection in dynamic WDM environment. The detailed analysis of the strategies demonstrate that our RWA algorithm provides significantly better performance than previous methods in terms of blocking probability whether with or without protection methods.  相似文献   

13.
《IEEE network》2009,23(3):26-33
We consider the offline version of the routing and wavelength assignment problem in transparent all-optical networks. In such networks and in the absence of regenerators, the signal quality of a transmission degrades due to physical layer impairments. Certain physical effects cause choices for one lightpath to affect and be affected by the choices made for other lightpaths. This interference among lightpaths is particularly difficult to formulate in an offline algorithm, since in this version of the problem we start without any established connections, and the utilization of lightpaths are the variables of the problem. For this reason the majority of work performed in this field either neglects lightpath interactions or assumes a worst case interference scenario. In this article we present a way to formulate interlightpath interference as additional constraints on RWA and show how to incorporate these constraints in an IA-RWA algorithm that directly accounts for the most important physical layer impairments. The objective of the resulting cross-layer optimization problem is not only to serve the connection requests using the minimum number of wavelengths (network layer objective), but also to select lightpaths that have acceptable quality of transmission performance (physical layer objective).  相似文献   

14.
波长交换光网络中路由波长分配技术   总被引:1,自引:0,他引:1  
路由波长分配问题是在给定连接的情况下,为该请求分配适当的光路进行传输。在无波长转换能力的情况下,需要为光路在其传输的链路上分配相同的波长,这就是波长连续性问题。物理层的光损伤极大的限制了光网络的能力,因此需要可感知损伤的路由波长分配算法来保证传输的质量。对于不同的感知损伤的路由波长分配方式,相应地,有不同的控制平面结构。  相似文献   

15.
Waveband switching (WBS) in conjunction with multigranular optical cross-connect (MG-OXC) architectures can reduce the cost and complexity of OXCs. In this paper, we study the performance of different MG-OXC architectures under dynamic traffic. In the case with online incremental traffic, we compare two MG-OXC architectures in terms of the blocking probability of new lightpath requests and study the impact of port counts and traffic loads. We develop an online integer linear programming model (On-ILP), which minimizes the number of used ports and the request blocking probability, given a fixed number of wavelengths and MG-OXC architecture. The On-ILP optimizes the routing of new lightpaths so as to maximize lightpath grouping and reduce the port count given that existing traffic cannot be rearranged. We also propose a new efficient heuristic algorithm, called maximum overlap ratio (MOR) to satisfy incremental traffic and compare it with the On-ILP, first-fit, and random-fit algorithms. Our results and analysis indicate that using WBS with MG-OXCs can reduce the size (and, hence, the cost) of switching fabrics compared to using ordinary OXCs. Based on the results and observations in the incremental traffic case, we further study the performance of a particular MG-OXC architecture under fully dynamic or fluctuating traffic. Our simulations show that the proposed heuristic algorithm waveband assignment with path graph, which groups wavelengths to bands and uses wavelength converters efficiently under fluctuating traffic, significantly outperforms other heuristic algorithms.  相似文献   

16.
A dynamic routing and wavelength allocation technique with an interplay between physical and network layer parameters encompassing Four-wave mixing (FWM) awareness and teletraffic performance of wavelength-routed optical networks has previously been proposed for a distributed approach. In this article, we present a fast computational algorithm for our routing and wavelength assignment (RWA) encompassing FWM-induced crosstalk. The objective is to minimize the time of establishing a dynamic lightpath. For this purpose, a precomputed matrix of FWM crosstalk products is used in an adapted version of the FWM-aware dynamic RWA algorithm. The approach is validated through simulations showing improvement up to 30–50% on the provisioning time of lightpaths for different network topologies compared to an online full computational scheme.
Ken-ichi KitayamaEmail:
  相似文献   

17.
This paper proposes and evaluates a four-wave mixing (FWM) aware evolutionary programming algorithm for dynamically setting up lightpaths in an optical wavelength division multiplexed network (WDM network). The proposed algorithm also considers the effect of amplified spontaneous emission noise (ASE noise) on a lightpath during propagation of the optical signal from any source to the intended destination. As crosstalk due to FWM and ASE noise are two transmission impairments that degrade the quality of optical signal even at low to medium data rates, it is mandatory for an algorithm for dynamic routing and wavelength assignment in a WDM network to consider the effect of these two impairments on the lightpath to be established. The distinguishing feature of the proposed algorithm is that it is based on an initial population of a single individual and uses a fitness function that is expressed in terms of the number of hops, path cost, variance contributions due to FWM crosstalk, amplifier noise, and different beat noises at the receiver. The performance of a newly introduced FWM aware priority-based wavelength assignment technique is compared with few of the existing wavelength assignment techniques in the present work.  相似文献   

18.
We introduce the concept of a light-tree in a wavelength-routed optical network. A light-tree is a point-to-multipoint generalization of a lightpath. A lightpath is a point-to-point all-optical wavelength channel connecting a transmitter at a source node to a receiver at a destination node. Lightpath communication can significantly reduce the number of hops (or lightpaths) a packet has to traverse; and this reduction can, in turn, significantly improve the network's throughput. We extend the lightpath concept by incorporating an optical multicasting capability at the routing nodes in order to increase the logical connectivity of the network and further decrease its hop distance. We refer to such a point-to-multipoint extension as a light-tree. Light-trees can not only provide improved performance for unicast traffic, but they naturally can better support multicast traffic and broadcast traffic. In this study, we shall concentrate on the application and advantages of light-trees to unicast and broadcast traffic. We formulate the light-tree-based virtual topology design problem as an optimization problem with one of two possible objective functions: for a given traffic matrix, (i) minimize the network-wide average packet hop distance, or (ii) minimize the total number of transceivers in the network. We demonstrate that an optimum light-tree-based virtual topology has clear advantages over an optimum lightpath-based virtual topology with respect to the above two objectives  相似文献   

19.
Assi  C. Shami  A. Ali  M.A. Kurtz  R. Guo  D. 《IEEE network》2001,15(4):36-45
This article considers the problem of real-time provisioning of optical channels in hybrid IP-centric DWDM-based networks. First, we present an overview of the emerging architectural alternatives for IP over optical networks, namely, the overlay, the peer, and the augmented models. Then lightpath provisioning issues are detailed for route selection, with a particular focus on the “routing and wavelength assignment” (RWA) problem. In particular, a broad overview is presented, with methodologies and associated algorithms for dynamic lightpath computation being outlined. Additionally, two broad constraint-based RWA algorithms for dynamic provisioning of the optical channels are presented and evaluated. Finally, the implications of implementing the proposed RWA schemes for the lightpath provisioning aspects for each of the three emerging IP over optical network interconnection models are examined  相似文献   

20.
Blocking probability has been one of the key performance indexes in the design of wavelength-routed all-optical WDM networks. Existing research has demonstrated that an effective Routing and Wavelength Assignment (RWA) algorithm and wavelength conversion are two primary vehicles for improving the blocking performance. However, these two issues have largely been investigated separately; in particular the existing RWA algorithms have seldom considered the presence of wavelength conversion. In this paper, we firstly demonstrate that the existing dynamic RWA algorithms do not work well in the presence of wavelength conversion as they usually only take into account the current traffic, and do not explicitly consider the route lengths. We then propose a weighted least-congestion routing and first-fit wavelength assignment (WLCR-FF) algorithm that considers both the current traffic load and the route lengths jointly. We further introduce an analytical model that can evaluate the blocking performance for WLCR algorithm. We carry out extensive numerical studies over typical topologies including ring, mesh-torus, and the 14-node NSFNET; and compare the performance of WLCR-FF with a wide variety of existing routing algorithms including static routing, fixed-alternate routing and least-loaded routing. The results conclusively demonstrate that the proposed WLCR-FF algorithm can achieve much better blocking performance in the presence of sparse or/and full wavelength conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号